ICCV 2021 | FcaNet: Frequency Channel Attention Networks 中的频率分析

server/2024/9/23 10:22:48/

ICCV 2021 | FcaNet: Frequency Channel Attention Networks 中的频率分析

  • 论文:https://arxiv.org/abs/2012.11879
  • 代码:https://github.com/cfzd/FcaNet

文章是围绕 2D 的 DCT 进行展开的,本文针对具体的计算逻辑进行梳理和解析。

f ( u , v ) = α u α v H W ∑ i = 0 H − 1 ∑ j = 0 W − 1 f ( i , j ) cos ⁡ ( 2 i + 1 ) u π 2 H cos ⁡ ( 2 j + 1 ) v π 2 W = ∑ i = 0 H − 1 [ α u H cos ⁡ ( 2 i + 1 ) u π 2 H ] ∑ j = 0 W − 1 [ α v W cos ⁡ ( 2 j + 1 ) v π 2 W ] x ( i , j ) = ∑ i = 0 H − 1 A u i ∑ j = 0 W − 1 A v j x ( i , j ) = ∑ i = 0 H − 1 ∑ j = 0 W − 1 x ( i , j ) B u , v i , j , u ∈ { 0 , 1 , … , H − 1 } , v ∈ { 0 , 1 , … , W − 1 } α u = { 1 u = 0 2 u ≠ 0 , α v = { 1 v = 0 2 v ≠ 0 , x = ∑ u = 0 H − 1 ∑ v = 0 W − 1 f ( u , v ) B u , v i , j \begin{align} \\ f(u,v) &= \sqrt{\frac{\alpha_{u}\alpha_{v}}{HW }} \sum^{H-1}_{i=0} \sum^{W-1}_{j=0} f(i,j) \cos\frac{(2i+1)u\pi}{2H} \cos\frac{(2j+1)v\pi}{2W} \\ & = \sum^{H-1}_{i=0} \left[ \sqrt{ \frac{\alpha_{u}}{H} }\cos\frac{(2i+1)u\pi}{2H}\right] \sum^{W-1}_{j=0} \left[ \sqrt{ \frac{\alpha_{v}}{W} }\cos\frac{(2j+1)v\pi}{2W} \right] x(i,j) \\ & = \sum^{H-1}_{i=0} A^{i}_{u} \sum^{W-1}_{j=0} A^{j}_{v} x(i,j) \\ & = \sum^{H-1}_{i=0} \sum^{W-1}_{j=0} x(i,j) B^{i,j}_{u,v}, \, u \in \{0, 1, \dots, H-1\}, \, v \in \{0, 1, \dots, W-1\} \\ \alpha_{u} & = \left\{ \begin{matrix} 1 & u = 0 \\ 2 & u \ne 0, \end{matrix} \right. \quad \alpha_{v} = \left\{ \begin{matrix} 1 & v = 0 \\ 2 & v \ne 0, \end{matrix} \right. \\ x & = \sum^{H-1}_{u=0} \sum^{W-1}_{v=0} f(u,v) B^{i,j}_{u,v} \end{align} f(u,v)αux=HWαuαv i=0H1j=0W1f(i,j)cos2H(2i+1)uπcos2W(2j+1)vπ=i=0H1[Hαu cos2H(2i+1)uπ]j=0W1[Wαv cos2W(2j+1)vπ]x(i,j)=i=0H1Auij=0W1Avjx(i,j)=i=0H1j=0W1x(i,j)Bu,vi,j,u{0,1,,H1},v{0,1,,W1}={12u=0u=0,αv={12v=0v=0,=u=0H1v=0W1f(u,v)Bu,vi,j

实际上这里是将 2D 图像的空间索引 i , j i,j i,j 看做了时域索引,而频域分量的空间位置则由 h , w h,w h,w 索引。从上面的推导中可以看到,正反变换使用的系数是一样的。这就体现出了 DCT 的简洁性。

矩阵形式为:

f ∈ R H × W = A H ⊤ x A W = A ⊤ x A i f H = W A H = [ ( i = 0 , u = 0 ) … ( i = 0 , u = H − 1 ) ⋮ ⋮ ⋮ ( i = H − 1 , u = 0 ) … ( i = H − 1 , u = H − 1 ) ] ∈ R H × H A W = [ ( j = 0 , v = 0 ) … ( j = 0 , v = W − 1 ) ⋮ ⋮ ⋮ ( j = W − 1 , v = 0 ) … ( j = W − 1 , v = W − 1 ) ] ∈ R W × H x = A H ⊤ f A W ( H = W 时, A H 与 A W 在是正交的, H ≠ W 时不清楚 ) \begin{align} f & \in \mathbb{R}^{H \times W} = A^{\top}_{H}xA_{W} = A^{\top}xA \quad if \, H=W \\ A_{H} & = \begin{bmatrix} (i=0,u=0) & \dots & (i=0,u=H-1) \\ \vdots & \vdots & \vdots \\ (i=H-1,u=0) & \dots & (i=H-1,u=H-1) \\ \end{bmatrix} \in \mathbb{R}^{H \times H} \\ A_{W} & = \begin{bmatrix} (j=0,v=0) & \dots & (j=0,v=W-1) \\ \vdots & \vdots & \vdots \\ (j=W-1,v=0) & \dots & (j=W-1,v=W-1) \\ \end{bmatrix} \in \mathbb{R}^{W \times H} \\ x & = A^{\top}_{H}fA_{W} (H=W时,A_{H}与A_{{W}}在是正交的,H \ne W时不清楚) \end{align} fAHAWxRH×W=AHxAW=AxAifH=W= (i=0,u=0)(i=H1,u=0)(i=0,u=H1)(i=H1,u=H1) RH×H= (j=0,v=0)(j=W1,v=0)(j=0,v=W1)(j=W1,v=W1) RW×H=AHfAW(H=W时,AHAW在是正交的,H=W时不清楚)

文中证明了 SEBlock 中的 GAP 操作就是 DCT 中的最低频率的组件。

f ( 0 , 0 ) = ∑ i = 0 H − 1 ∑ j = 0 W − 1 x ( i , j ) B 0 , 0 i , j = ∑ i = 0 H − 1 ∑ j = 0 W − 1 x ( i , j ) = GAP ( x ) H W \begin{align} f(0,0) = \sum^{H-1}_{i=0}\sum^{W-1}_{j=0}x(i,j)B^{i,j}_{0,0} = \sum^{H-1}_{i=0}\sum^{W-1}_{j=0}x(i,j) = \text{GAP}(x)HW \end{align} f(0,0)=i=0H1j=0W1x(i,j)B0,0i,j=i=0H1j=0W1x(i,j)=GAP(x)HW

所以作者们在 GAP 的基础上进一步补充了其他的频率成分。考虑变换的公式,假定 H = W = 7 H=W=7 H=W=7,则其中的基函数可以直接得出:

α u 7 cos ⁡ ( 2 i + 1 ) u π 14 = α u 7 cos ⁡ ( π u 7 ( i + 0.5 ) ) , u ∈ { 0 , 1 , … , 6 } \begin{align} \sqrt{ \frac{\alpha_{u}}{7} } \cos\frac{(2i+1)u\pi}{14} = \sqrt{ \frac{\alpha_{u}}{7} } \cos\left( \pi \frac{u}{7} (i+0.5) \right), \, u \in \{0, 1, \dots, 6\} \end{align} 7αu cos14(2i+1)uπ=7αu cos(π7u(i+0.5)),u{0,1,,6}

对应于代码中的:

def build_filter(self, pos, freq, POS):result = math.cos(math.pi * freq * (pos + 0.5) / POS) / math.sqrt(POS) if freq == 0:return resultelse:return result * math.sqrt(2)

这里的 freq 实际上对应的就是前式里的 u u u v v v。因此,对于 7 × 7 7 \times 7 7×7 的数据,实际上存在 49 个分量,作者们通过大量的实验对不同分量单独使用时的效果进行了汇总:

在这里插入图片描述

通过对得分由高到低排序得到 49 个 ( u , v ) (u,v) (u,v) 对,在代码中直接按情况选择即可。

参考链接

  • 《数字图像处理》图像表征:离散傅里叶变换(DFT)、离散余弦变换(DCT)、主成分分析(PCA)- zhiwei 的文章 - 知乎 https://zhuanlan.zhihu.com/p/563668048

http://www.ppmy.cn/server/19991.html

相关文章

笔记:.NET的框架梳理及相关概念了解(“.NET Core“ “.NET“ “.NET Framework“)

一、.NET设计 架构:C/C程序是直接将源码编译成机器码(CPU可以识别和运行的指令),对于不同CPU,其指令集不同,机器码也就不同,故:C/C程序编译时,需选择具体的CPU架构&…

深度学习基础:循环神经网络中的长期依赖问题

循环神经网络中的长期依赖问题 在深度学习中,循环神经网络(RNN)是一种经典的模型,用于处理序列数据,如自然语言处理、时间序列预测等任务。然而,传统的RNN存在着一个长期依赖问题,即在处理长序…

linux demo

1.1)if case test the results #!bin/bash read -p “请输入你的成绩:” num if [ $num -ge 0 ] && [ $num -le 100 ];then if [ $num -ge 80 ] && [ $num -le 100 ];then echo “成绩优秀” elif [ $num -ge 60 ] && [ $num …

redis单线程模型

工作原理 在Redis中,当两个客户端同时发送相同的请求时,Redis采用单线程模型来处理所有的客户端请求,会依次处理这些请求,每个请求都会按照先后顺序被执行,不会同时处理多个请求。使得Redis能够避免多线程并发访问数据…

element-plus 如何获取所有的icon图标名称,并排列展示?

一、获取所有的element-plus中icon图标: import * as ElIcon from element-plus/icons-vueconsole.log(ElIcon) 从控制台打印可以看到,ElIcon为所有的icon组成的对象,要组成包含icon名称的数组,可以去key值或者name值&#xff08…

【Git】分支管理的基本操作

文章目录 理解分支分支的本质主分支创建分支切换分支合并分支fast-forward模式删除分支合并冲突问题 理解分支 分支管理是git的一个核心功能。在git中,分支是用来独立开发于某个功能或者修复某个bug的一种方式。就像是《火影忍者》中的鸣人使用分身去妙蛙山修炼&am…

package.json 里面的 dependencies 和 devDependencies 的差异

差异 其实不严格的话,没有特别的差异;若是严格,遵循官方的理解。 dependencies:存放线上或者业务能访问的核心代码模块,比如 vue、vue-routerdevDependencies:处于开发模式下所依赖的开发模块&#xff0c…

windows ubuntu linux三剑客,sed awk grep 篇,1.

用 sed 和 awk 提高你的 UNIX 和 Linux 水平 目录 第一章:Sed 语法和基本命令 1.1 Sed 命令语法 1.2 Sed 脚本执行流程 1.3.打印模式空间(命令 p) 4.删除行 1.5把模式空间内容写到文件中(w 命令) 第一章:Sed 语法和基本命令 所有的示例都要用到下面的 e…