深度学习pytorch实战-运动鞋识别P5周

server/2024/9/25 8:30:32/

向大佬学习大地之灯第P5周:Pytorch实现运动鞋识别icon-default.png?t=N7T8http://t.csdnimg.cn/eVVAG

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

引言

一篇高质量文章引发的思考,文章链接如下高效学习,学习的目的,感触颇深,有几点感悟。

1.注重内核提升而不是形式主义,知识点千千万,永远学不完,普通人与人才之间的差别就是解决问题的能力,学习的首要任务其实就是提升问题解决能力。在这个检索信息如此便利的时代。

2.遇到无法检索的问题,该怎么办,培养自己的思考能力,培养自己的主观能动性,遇到问题主动解决,正如我们这个训练营计划,珍惜每次学习机会,积极探索,充分吸收。

3.如图

所以,不在弄那么多形式主义了,以构造模型,训练模型为第一准则。

环境

环境

学习要求

一、前期准备

1、设置GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasetsimport os,PIL,pathlibdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")device

2、导入数据

import os,PIL,random,pathlibdata_dir = './5-data/'
data_dir = pathlib.Path(data_dir)data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

二、构建简单的CNN网络

import torch.nn.functional as Fclass Model(nn.Module):def __init__(self):super(Model, self).__init__()self.conv1=nn.Sequential(nn.Conv2d(3, 12, kernel_size=5, padding=0), # 12*220*220nn.BatchNorm2d(12),nn.ReLU())self.conv2=nn.Sequential(nn.Conv2d(12, 12, kernel_size=5, padding=0), # 12*216*216nn.BatchNorm2d(12),nn.ReLU())self.pool3=nn.Sequential(nn.MaxPool2d(2))                              # 12*108*108self.conv4=nn.Sequential(nn.Conv2d(12, 24, kernel_size=5, padding=0), # 24*104*104nn.BatchNorm2d(24),nn.ReLU())self.conv5=nn.Sequential(nn.Conv2d(24, 24, kernel_size=5, padding=0), # 24*100*100nn.BatchNorm2d(24),nn.ReLU())self.pool6=nn.Sequential(nn.MaxPool2d(2))                              # 24*50*50self.dropout = nn.Sequential(nn.Dropout(0.2))self.fc=nn.Sequential(nn.Linear(24*50*50, len(classeNames)))def forward(self, x):batch_size = x.size(0)x = self.conv1(x)  # 卷积-BN-激活x = self.conv2(x)  # 卷积-BN-激活x = self.pool3(x)  # 池化x = self.conv4(x)  # 卷积-BN-激活x = self.conv5(x)  # 卷积-BN-激活x = self.pool6(x)  # 池化x = self.dropout(x)x = x.view(batch_size, -1)  # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50x = self.fc(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = Model().to(device)
model
  • x.view()只是一个张量形状变换的操作,它本身不包含任何参数(如权重和偏置),也不进行任何学习或推断。
  • FC层是一个包含参数的层,它通过学习权重和偏置来对输入特征进行分类。FC层可以看作是一个线性变换,它将输入特征映射到输出类别的得分上

三、训练模型

编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

编写测试函数,

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

设置动态学习率

def adjust_learning_rate(optimizer, epoch, start_lr):# 每 2 个epoch衰减到原来的 0.98lr = start_lr * (0.92 ** (epoch // 2))for param_group in optimizer.param_groups:param_group['lr'] = lrlearn_rate = 1e-4 # 初始学习率
optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)
#✨调用官方动态学习率接口#与上面方法是等价的# # 调用官方动态学习率接口时使用
# lambda1 = lambda epoch: (0.92 ** (epoch // 2)
# optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

正式训练

第二次训练,参数不变,epochs40 学习率1e-4 # 初始学习率

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):# 更新学习率(使用自定义学习率时使用)adjust_learning_rate(optimizer, epoch, learn_rate)model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)# scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))
print('Done')

 

 

 

 

 说明了,当其他条件不变时,epochs到达一定次数测试集准确率就会固定

 

 

 

 终于达到了基础标准84%

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

2. 指定图片进行预测

torch.squeeze()详解

对数据的维度进行压缩,去掉维数为1的的维度

函数原型:

torch.squeeze(input, dim=None, *, out=None)

关键参数说明:

  • input (Tensor):输入Tensor
  • dim (int, optional):如果给定,输入将只在这个维度上被压缩
from PIL import Image classes = list(train_dataset.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')# plt.imshow(test_img)  # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./5-data/test/adidas/1.jpg', model=model, transform=train_transforms, classes=classes)

五、保存并加载模型 

# 模型保存
PATH = './model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

六、动态学习率(学习率调度器(scheduler))

Pytorch中动态调整学习率icon-default.png?t=N7T8http://t.csdnimg.cn/iar0X

1.    torch.optim.lr_scheduler.StepLR

等间隔动态调整方法,每经过step_size个epoch,做一次学习率decay,以gamma值为缩小倍数。

函数原型:

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

关键参数详解

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • step_size(int):是学习率衰减的周期,每经过每个epoch,做一次学习率decay
  • gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例:

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

 2. lr_scheduler.LambdaLR

根据自己定义的函数更新学习率。

函数原型

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)

关键参数详解

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • lr_lambda(function):更新学习率的函数

用法示例:

lambda1 = lambda epoch: (0.92 ** (epoch // 2) # 第二组参数的调整方法
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法

3. lr_scheduler.MultiStepLR 

在特定的 epoch 中调整学习率

函数原型

torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1, verbose=False)

关键参数详解

  • optimizer(Optimizer):是之前定义好的需要优化的优化器的实例名
  • milestones(list):是一个关于epoch数值的list,表示在达到哪个epoch范围内开始变化,必须是升序排列
  • gamma(float):学习率衰减的乘法因子。Default:0.1

用法示例

optimizer = torch.optim.SGD(net.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[2,6,15], #调整学习率的epoch数gamma=0.1)

 调用官方接口实例

model = [Parameter(torch.randn(2, 2, requires_grad=True))]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)for epoch in range(20):for input, target in dataset:optimizer.zero_grad()output = model(input)loss = loss_fn(output, target)loss.backward()optimizer.step()scheduler.step()

总结

初次训练时,其他参数不变,只改变轮次,轮次达到一定数量时候,testacc已经基本确定了,82左右。

所以我重新设置了学习率为1,发现准确率最高只有50左右。随后又改编为初始学习率0.0001,重新开始训练,我才可能是第一次陷入局部最优了?经过调整释放了出来,对了,我更换了学习率衰减策略,引入gamma

效果能到达84的
optimizer = torch.optim.SGD(model.parameters(), lr=0.001 )
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)效果82左右的
# def adjust_learning_rate(optimizer, epoch, start_lr):
#     # 每 2 个epoch衰减到原来的 0.98
#     lr = start_lr * (0.98 ** (epoch // 2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lr# learn_rate = 1e-4# 初始学习率
# optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)

展望

问题一,相同网络结构,不同数据集,测试结果会怎样?

问题二,网络结构是如何设计的。

通过观察:

P1:手写数字识别网络结构设计为输入,卷积层,池化层,卷积层,池化层,Flatten层,全连接层,输出层。

P2:....................下次在解决


http://www.ppmy.cn/server/17829.html

相关文章

[BT]BUUCTF刷题第20天(4.22)

第20天 Web [GWCTF 2019]我有一个数据库 打开网站发现乱码信息(查看其他题解发现显示的是:我有一个数据库,但里面什么也没有~ 不信你找) 但也不是明显信息,通过dirsearch扫描得到robots.txt,然后在里面得…

【Linux】如何进行用户之间的切换——指令su

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …

学习 Rust 的第九天:如何使用结构体

好的,我已经收到完整的内容了。我会按照规则对其进行翻译,稍等片刻。 大家好, 今天是学习 Rust 的第九天,我们要讨论一个非常重要的概念,即 结构体(structs),它可以将相关的数据组…

Stable Diffusion Web UI Windows部署及坑

文章目录 1、准备2、Miniconda安装3、git安装4、安装CUDA4、开始部署遇到的坑 1、准备 官网需要翻墙软件最少6G内存,显卡在2060以上 2、Miniconda安装 这是一个运行python的环境管理工具进入官网点击download下载打开文件一路到 Advanced Options,勾选…

06.JAVAEE之线程4

1.定时器 1.1 定时器是什么 定时器也是软件开发中的一个重要组件. 类似于一个 " 闹钟 ". 达到一个设定的时间之后 , 就执行某个指定好的代码. 约定一个时间,时间到达之后,执行某个代码逻辑, 定时器非常常见,尤其是在进行网络通信的时候, 需要有等待的最大时间&…

【优秀AI项目】每日跟踪 OpenVoice ,AI快站,OpenVoice

持续更新好玩的开源AI项目或AI商业应用体验 一起来玩转AI!! 1 huggingface 国内镜像站:AI 快站 HUggingface被墙了,emmmmm 所以我之前玩模型的一大感觉就是 下载什么模型之类的太难受了!服了 看到一个镜像站——…

【MySQL】创建和管理数据库

1、创建数据库 创建数据库——CREATE DATABASE 数据库名;创建数据库并指定字符集——CREATE DATABASE 数据库名 CHARACTER SET 字符集;判断数据库是否已经存在,不存在则创建数据库——CREATE DATABASE IF NOT EXISTS 数据库名; 2、使用数据库 查看当前所有的数据库…

Kubernetes(k8s)的概念以及使用

k8s的概念: K8s是指Kubernetes,是一个开源的容器编排和管理平台。它最初由Google开发,并于2014年将其开源。Kubernetes旨在简化容器化应用程序的部署、扩展和管理。 Kubernetes提供了一种可靠且可扩展的平台,用于管理容器化应用…