图像处理篇---图像预处理

server/2025/3/18 1:53:22/

文章目录

  • 前言
  • 一、通用目的
    • 1.1 数据标准化
      • 目的
      • 实现
    • 1.2 噪声抑制
      • 目的
      • 实现
        • 高斯滤波
        • 中值滤波
        • 双边滤波
    • 1.3 尺寸统一化
      • 目的
      • 实现
    • 1.4 数据增强
      • 目的
      • 实现
    • 1.5 特征增强
      • 目的
      • 实现:
        • 边缘检测
        • 直方图均衡化
        • 锐化
  • 二、分领域预处理
    • 2.1 传统机器学习(如SVM、随机森林)
      • 2.1.1 特点
      • 2.1.2 预处理重点
        • 灰度化
        • 二值化
        • 形态学操作
        • 特征工程
    • 2.2 深度学习(如CNN、Transformer)
      • 2.2.1 特点
      • 2.2.2 预处理重点
        • 通道顺序调整
        • 批量归一化
        • 高级增强
        • 预训练模型适配
    • 2.3 其他领域
      • 2.3.1医学影像(如MRI、CT)
        • 去伪影
        • 标准化
      • 2.3.2 卫星遥感
        • 多光谱融合
        • 辐射校正
      • 2.3.3 工业检测
        • 背景分割
        • 高动态范围
  • 三、工具与库
    • 3.1 OpenCV
    • 3.2 PIL/Pillow
    • 3.3 scikit-image
    • 3.4 TensorFlow
    • 3.5 PyTorch
  • 四、总结
    • 4.1 目标检测
    • 4.2 语义分割
    • 4.3 低光照场景


前言

图像预处理是机器学习和计算机视觉任务中至关重要的一环,其核心目的是通过对原始图像进行优化和调整提升模型性能、降低噪声干扰、增强关键特征,并适应模型的输入要求。以下是分领域的详细说明:


一、通用目的

1.1 数据标准化

目的

目的:统一输入数据的分布,避免因像素值范围差异(如0-255或0-1)导致模型训练不稳定。

实现

python">#归一化到 [0, 1]
image_normalized = image / 255.0
#标准化(均值中心化 + 方差归一化)
image_standardized = (image - mean) / std

1.2 噪声抑制

目的

目的:消除图像中的随机噪声(如高斯噪声、椒盐噪声),提升特征提取的鲁棒性

实现

高斯滤波

高斯滤波:cv2.GaussianBlur()

中值滤波

中值滤波:cv2.medianBlur()

双边滤波

双边滤波:保留边缘的同时去噪,cv2.bilateralFilter()

1.3 尺寸统一化

目的

目的:确保所有输入图像尺寸一致,适配模型输入层(如CNN要求固定尺寸)。

实现

python">resized_image = cv2.resize(image, (width, height))

1.4 数据增强

目的

目的:通过**几何变换(旋转、翻转、裁剪)颜色扰动(亮度、对比度调整)**扩充数据集,防止过拟合。

实现

python">#使用OpenCV或深度学习框架(如TensorFlow的ImageDataGenerator)
flipped = cv2.flip(image, 1)  # 水平翻转
rotated = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)

1.5 特征增强

目的

目的:突出目标区域的关键特征(如边缘、纹理)

实现:

边缘检测

边缘检测:Sobel算子、Canny算子

直方图均衡化

直方图均衡化:cv2.equalizeHist()(增强对比度)

锐化

锐化:拉普拉斯算子或自定义卷积核

二、分领域预处理

2.1 传统机器学习(如SVM、随机森林)

2.1.1 特点

特点:依赖手工提取特征(如HOG、LBP、颜色直方图)。

2.1.2 预处理重点

灰度化

灰度化:减少计算量,cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

二值化

二值化:cv2.threshold()(如文档OCR任务

形态学操作

形态学操作:腐蚀、膨胀(去除小斑点或连接断裂区域

特征工程

特征工程:提取统计特征(均值、方差)或结构特征。

2.2 深度学习(如CNN、Transformer)

2.2.1 特点

特点:端到端学习特征,但依赖大量数据和标准化输入。

2.2.2 预处理重点

通道顺序调整

通道顺序调整:适配框架要求(如TensorFlow的HWC格式或PyTorch的CHW格式)。

批量归一化

批量归一化:在数据加载阶段统一处理(如torchvision.transforms.Normalize)。

高级增强

高级增强:MixUp、CutMix等基于混合样本的策略。

预训练模型适配

预训练模型适配:输入需与预训练数据分布一致(如ImageNet的均值方差)。

2.3 其他领域

2.3.1医学影像(如MRI、CT)

去伪影

去伪影:消除扫描过程中的运动伪影或设备噪声

标准化

标准化:使用Z-score或直方图匹配**(不同设备间的数据一致性**)。

2.3.2 卫星遥感

多光谱融合

多光谱融合:合并不同波段的图像(如红外与可见光)。

辐射校正

辐射校正:消除大气干扰。

2.3.3 工业检测

背景分割

背景分割:提取ROI(如产品表面缺陷检测)。

高动态范围

高动态范围(HDR):处理过曝或欠曝区域

三、工具与库

3.1 OpenCV

OpenCV:基础操作(滤波、几何变换、颜色空间转换)。

3.2 PIL/Pillow

PIL/Pillow:简单的图像增强(缩放、裁剪)。

3.3 scikit-image

scikit-image:高级滤波和特征提取(如局部二值模式)。

3.4 TensorFlow

TensorFlow:tf.image模块

3.5 PyTorch

PyTorch:torchvision.transforms

四、总结

图像预处理的选择需结合具体任务:

4.1 目标检测

目标检测:可能更关注多尺度输入颜色增强

4.2 语义分割

语义分割:需保留空间信息,避免过度下采样

4.3 低光照场景

低光照场景:需Retinex算法或深度学习去噪(如AutoEncoder)。

通过合理设计预处理流程,可显著提升模型泛化能力收敛速度



http://www.ppmy.cn/server/175830.html

相关文章

kafka 中的 rebalance

Kafka 的 Rebalance(重平衡)机制本质上是一个协调过程,用于在消费者组内动态分配分区,以保证消费任务均匀分布。Rebalance 主要由 Kafka Consumer Group 协议(Group Membership Protocol)驱动,涉…

[特殊字符] 深度实战:Android 13 系统定制之 Recovery 模式瘦身指南

🌟 核心需求 在 Android 13 商显设备开发中,需精简 Recovery 模式的菜单选项(如Reboot to bootloader/Enter rescue),但直接修改g_menu_actions后在User 版本出现黑屏卡死问题,需综合方案解决。 &#x1f5…

Flask中的装饰器

在 Flask 中,装饰器(Decorator)是一种 Python 语法特性,它允许你在不修改原始函数的情况下,扩展其功能。Flask 使用装饰器来定义路由、请求前后钩子、中间件等。 1. Flask 装饰器的基本概念 Python 的装饰器本质上是一…

FPGA学习(二)——实现LED流水灯

FPGA学习(二)——实现LED流水灯 目录 FPGA学习(二)——实现LED流水灯一、DE2-115时钟源二、控制6个LED灯实现流水灯1、核心逻辑2、代码实现3、引脚配置4、实现效果 三、模块化代码1、分频模块2、复位暂停模块3、顶层模块 四、总结 一、DE2-115时钟源 DE2-115板子包含一个50MHz…

DataWhale 大语言模型 - GPT和DeepSeek模型介绍

本课程围绕中国人民大学高瓴人工智能学院赵鑫教授团队出品的《大语言模型》书籍展开,覆盖大语言模型训练与使用的全流程,从预训练到微调与对齐,从使用技术到评测应用,帮助学员全面掌握大语言模型的核心技术。并且,课程…

记第一次跟踪seatunnel的任务运行过程四——getJobConfigParser().parse()的动作

前绪 记第一次跟踪seatunnel的任务运行过程三——解析配置的具体方法getLogicalDag 正文 书接上文 ImmutablePair<List<Action>, Set<URL>> immutablePair getJobConfigParser().parse(null);在前一篇文章中说到getLogicDag()方法的第一行&#xff08;如…

删除二叉搜索树中的节点

本文参考代码随想录 给定一个二叉搜索树的根节点 root 和一个值 key&#xff0c;删除二叉搜索树中的 key 对应的节点&#xff0c;并保证二叉搜索树的性质不变。返回二叉搜索树&#xff08;有可能被更新&#xff09;的根节点的引用。 删除节点需要考虑多种情况&#xff1a; 没…

鸿蒙 @ohos.arkui.node

鸿蒙 ohos.arkui.node 在鸿蒙开发中&#xff0c;ohos.arkui.node 模块提供了一系列用于构建和管理自定义节点的 API。这些 API 组织在一起&#xff0c;方便开发者进行导出和使用。本文将详细介绍 ohos.arkui.node 模块的功能和使用方法。 一、模块功能概述 ohos.arkui.node 模…