FPGA中级项目1——IP核(ROM 与 RAM)
IP核简介
在 FPGA(现场可编程门阵列)设计中,IP 核(Intellectual Property Core,知识产权核)是预先设计好的、可重用的电路模块,用于实现特定功能。它们可以极大简化开发流程,提高设计效率,是现代 FPGA 设计的核心组成部分。可代替部分复杂Verilog代码设计!!!
IP 核的类型
软核(Soft IP):以 HDL 代码形式提供,灵活性高,可根据需求修改和优化。
例如:软处理器核(如 MicroBlaze)、自定义逻辑模块。
硬核(Hard IP):以物理布局(版图)形式集成到 FPGA 中,性能稳定但不可修改。
例如:高速串行收发器(SERDES)、DDR 控制器。
固核(Firm IP):介于软核和硬核之间,提供 RTL 代码或门级网表,部分优化但保留一定灵活性。
例如:数字信号处理(DSP)模块。
常见 IP 核应用场景
数字信号处理:FFT、FIR 滤波器、数字下变频(DDC)。
通信协议:Ethernet MAC、USB 3.0、PCIe。
接口与存储:DDR4 控制器、GPIO 扩展、UART。
嵌入式系统:软处理器(如 ARM Cortex-M/R 系列)、中断控制器。
图像处理:视频编解码、图像增强算法。
ROM IP核简介
在 FPGA 设计中,ROM IP 核是一种用于存储固定数据的预设计模块,其内容在运行时不可修改。它通过硬件资源(如片内 BRAM 或 LUT)实现,广泛用于存储程序代码、查找表、图像数据等固定信息。对于需要存储大量静态数据或实现快速查表的场景,ROM IP 核是首选方案。
ROM IP 核的类型与实现
基于 BRAM 的 ROM
硬核实现:利用 FPGA 片内专用存储块(如 Xilinx 的 BRAM、Intel 的 MegaCore)。
特点:高容量(单块可达 36/72 Kb)、低功耗、支持双端口访问。
适用场景:大数据量存储(如视频帧缓存)。
基于 LUT 的 ROM
软核实现:使用逻辑查找表(LUT)构建,容量较小。
特点:灵活性高,但资源占用大(每个 LUT 存储 1 位数据)。
适用场景:小规模查找表或临时数据存储。
混合实现
结合 BRAM 和 LUT,根据数据量动态选择存储方式。
关键参数配置
深度(Depth):存储单元的数量(如 256×8 表示 256 个 8 位存储单元)。
宽度(Width):每个存储单元的数据位宽。
访问模式
单端口:同一时间只能读写一个地址。
双端口:支持同时读写不同地址(需硬件资源支持)。
初始化文件:通过工具(如 Vivado 的 Memory Initialization File Editor)生成数据文件,指定每个地址的初始值。
应用场景举例
数字信号处理:存储 FIR 滤波器系数、FFT 蝶形运算常数。
示例:使用 ROM 存储正弦波查表数据,生成任意波形。
嵌入式系统:存储软核处理器(如 MicroBlaze)的启动代码。
实现状态机的固定控制序列。
通信协议
存储 MAC 地址、协议配置参数。
缓存通信帧的固定头部数据。
图像处理:存储颜色查找表(CLUT)、图像阈值数据。
问题分析ROM
1. 分布式ROM的容量要比块ROM小得多,因此如果我们可根据所需存储空间的大小不同来调用不同的IP核,甚至更小的我们只需要用到case语句,而不用IP核来实行。
2. 我们以块ROM的学习为例,来创建工程讲解。其中memory type为单端口类型,可定义单端口还是双端口类型(左边框图为实时设计综合形成的ROM IP核)。
单端口与双端口ROM差异
1.端口结构
单端口 ROM:只有一组地址线、数据线和控制信号。这意味着在同一时刻,它只能进行一次操作,要么是读取数据,并且只能对一个特定的地址进行操作。
例如,一个简单的单端口 ROM 可能有一个 8 位的地址线用于选择存储单元,一个 16 位的数据线用于输出数据,以及一个使能信号用于控制是否允许访问。
双端口 ROM:具备两组独立的地址线、数据线和控制信号。这使得它可以同时对两个不同的地址进行操作,大大提高了数据的访问效率。
例如,双端口 ROM 有端口 A 和端口 B,每个端口都有自己独立的地址线、数据线和使能信号,端口 A 可以在读取一个地址的数据时,端口 B 同时读取另一个地址的数据。
2.访问特性
单端口 ROM:同一时刻只能进行一次读操作,即一次只能访问一个存储单元。这限制了数据的读取速度,尤其是在需要频繁快速读取不同地址数据的应用中。
例如,在一个简单的数字系统中,如果需要按照顺序依次读取 ROM 中的数据,单端口 ROM 可以满足需求,但当需要同时获取多个不同位置的数据时,就会显得力不从心。
双端口 ROM:支持同时进行两个独立的读操作,能够并行地从两个不同的地址读取数据。这在需要高速数据处理和多任务并行的场景中非常有用。
例如,在图像处理中,可能需要同时读取图像的不同部分进行并行处理,双端口 ROM 就可以同时提供所需的数据,提高处理速度。
3.访问双端口ROM的代码示例
module dual_port_rom #(parameter DATA_WIDTH = 8, // 数据位宽parameter ADDR_WIDTH = 4 // 地址位宽
) (input wire clk, // 时钟信号// 端口Ainput wire [ADDR_WIDTH-1:0] addr_a,output reg [DATA_WIDTH-1:0] data_a,// 端口Binput wire [ADDR_WIDTH-1:0] addr_b,output reg [DATA_WIDTH-1:0] data_b
);// 定义ROM数组reg [DATA_WIDTH-1:0] rom [(2**ADDR_WIDTH)-1:0];// 初始化ROM内容initial begin// 这里可以根据需要修改初始化数据rom[0] = 8'h01;rom[1] = 8'h02;rom[2] = 8'h03;rom[3] = 8'h04;rom[4] = 8'h05;rom[5] = 8'h06;rom[6] = 8'h07;rom[7] = 8'h08;rom[8] = 8'h09;rom[9] = 8'h0A;rom[10] = 8'h0B;rom[11] = 8'h0C;rom[12] = 8'h0D;rom[13] = 8'h0E;rom[14] = 8'h0F;rom[15] = 8'h10;end// 端口A的读操作always @(posedge clk) begindata_a <= rom[addr_a];end// 端口B的读操作always @(posedge clk) begindata_b <= rom[addr_b];endendmodule
4.测试双端口ROM的代码示例
module tb_dual_port_rom;reg clk;reg [3:0] addr_a;reg [3:0] addr_b;wire [7:0] data_a;wire [7:0] data_b;// 实例化双端口ROMdual_port_rom uut (.clk(clk),.addr_a(addr_a),.data_a(data_a),.addr_b(addr_b),.data_b(data_b));// 时钟生成initial beginclk = 0;forever #5 clk = ~clk; // 10个时间单位的时钟周期end// 测试序列initial begin// 初始化信号addr_a = 4'b0000;addr_b = 4'b0001;#20;addr_a = 4'b0010;addr_b = 4'b0011;#20;$finish;endendmodule
本项目,我们选择单端口A来进行ROM IP核设置!
3. 在端口A选项设置中,其中 width 和 depth 分别代表数据的位宽与容量
4. 在端口A的其他选项中,我们需要特别注意的是,给准备创建的ROM核里面存入内容。即为下图中的load init file选项。
可以自己手动编辑,也可以用相关软件自行生成。如下所示可自动生成宽度为5位,深度为1024的正弦波数据从而存入load init file选项的COE file中。
5. 最后是我们配置好的总结窗口,可查看相关的选项配置。最后点击OK便可生成ROM的IP核,存在于源代码文件夹选项之下(可代替手搓Verilog代码)
RAM IP核简介
RAM IP 核允许在任意时刻、以任意顺序对存储单元进行读写操作,这使得数据的访问非常灵活。它以硬件形式实现于 FPGA 中,可根据设计需求灵活配置其参数,如存储容量、数据位宽等。
类型及特点
1. 单端口 RAM(Single - Port RAM)
端口结构:只有一组地址线、数据线和读写控制信号。在同一时刻,只能进行读或写一种操作。
特点:结构简单,资源占用相对较少。适用于对数据读写操作不太频繁、不需要同时进行读写的场景,例如简单的缓冲存储。
2. 双端口 RAM(Dual - Port RAM)
端口结构:具备两组独立的地址线、数据线和读写控制信号。可以同时对两个不同的地址进行读写操作,提高了数据的访问效率。
特点:支持并行操作,能满足一些对数据处理速度要求较高的应用。但由于结构相对复杂,占用的 FPGA 资源也较多。
3. 真双端口 RAM(True Dual - Port RAM)
端口结构:是双端口 RAM 的一种特殊类型,两个端口都可以独立地进行读写操作,并且可以同时对同一地址进行操作(不过可能需要处理一些冲突情况)。
特点:提供了最高级别的并行访问能力,适用于需要高度并发数据处理的复杂系统。
关键参数配置
存储深度(Depth):表示 RAM 中存储单元的数量。例如,一个存储深度为 256 的 RAM 可以存储 256 个数据单元。
数据位宽(Width):指每个存储单元的数据位数。常见的数据位宽有 8 位、16 位、32 位等。存储深度和数据位宽共同决定了 RAM 的存储容量,容量 = 存储深度 × 数据位宽。
读写模式:包括同步读写和异步读写。同步读写操作在时钟信号的控制下进行,具有更好的时序特性和稳定性;异步读写操作不依赖时钟信号,响应速度较快,但设计时需要更关注时序问题。
应用场景
数据缓存:在数据采集系统中,用于临时存储采集到的数据,等待后续处理。例如,在高速 AD 采样中,将采样数据先存储在 RAM 中,再进行数据分析和处理。
FIFO(First - In - First - Out)实现:通过合理配置 RAM 的读写指针,可以实现 FIFO 缓冲器,用于数据的顺序存储和读取,常用于不同时钟域之间的数据传输。
图像处理:在图像处理算法中,需要对图像数据进行缓存和处理,RAM IP 核可以存储图像的像素数据,方便进行各种滤波、变换等操作。
数字信号处理(DSP):在 DSP 算法中,如 FFT(快速傅里叶变换)、卷积运算等,需要临时存储中间结果和数据,RAM 可以满足这些数据存储和快速访问的需求。
问题分析RAM
1. RAM IP核的创建可按照ROM来如法炮制,可根据所要完成任务的需求来定制。值得注意的是,RAM有读和写两个信号,需要进行相关的配置。而ROM只需要读即可。同样也有单端口与双端口的选项差异。在这里我们选择的是双端口通道
2. RAM端口A设置如下,operating mode 设置为写优先模式,保证写入的数据是正确的。同时宽度与深度要根据所做的项目来选择。
3. RAM端口B设置如下
4. 最后就是RAM IP核的总结界面。需要注意:整个流程重点在于存储容量的计算!即根据项目来实现深度的配置要求!