LC串联,在t0时刻接入直流电压 U i n U_{in} Uin。
电感电流 i ( t ) i(t) i(t)和电容电压 u c ( t ) u_c(t) uc(t)的时域表达式可通过二阶微分方程求解。以下是推导过程与结果:
1. 微分方程建立
电感 L L L与电容 C C C串联,接入直流电压源 U in U_{\text{in}} Uin。根据基尔霍夫电压定律 K V L KVL KVL,有:
U in = L d i d t + u c U_{\text{in}} = L \frac{di}{dt} + u_c Uin=Ldtdi+uc
i = C d u c d t i = C \frac{du_c}{dt} i=Cdtduc
2. 化简为二阶微分方程
将 i = C d u c d t i = C \frac{du_c}{dt} i=Cdtduc 代入 KVL 方程,消去 i i i:
U in = L d d t ( C d u c d t ) + u c U_{\text{in}} = L \frac{d}{dt}\left(C \frac{du_c}{dt}\right) + u_c Uin=Ldtd(Cdtduc)+uc
整理后得到二阶方程:
L C d 2 u c d t 2 + u c = U in LC \frac{d^2u_c}{dt^2} + u_c = U_{\text{in}} LCdt2d2uc+uc=Uin
3. 求解微分方程
齐次方程通解
齐次方程 L C u c ′ ′ + u c = 0 LC u_c'' + u_c = 0 LCuc′′+uc=0的通解为振荡形式:
u c (hom) ( t ) = A cos ( ω t ) + B sin ( ω t ) u_c^{\text{(hom)}}(t) = A \cos(\omega t) + B \sin(\omega t) uc(hom)(t)=Acos(ωt)+Bsin(ωt)
其中谐振角频率:
ω = 1 L C \omega = \frac{1}{\sqrt{LC}} ω=LC1
非齐次方程特解
设特解为常数 u c (p) = U in u_c^{\text{(p)}} = U_{\text{in}} uc(p)=Uin。代入方程:
L C ⋅ 0 + U in = U in LC \cdot 0 + U_{\text{in}} = U_{\text{in}} LC⋅0+Uin=Uin
成立,即特解有效。
通解与初始条件
电容电压的总解为:
u c ( t ) = U in ⏟ 特解 + A cos ( ω t ) + B sin ( ω t ) ⏟ 齐次解 u_c(t) = \underbrace{U_{\text{in}}}_{\text{特解}} + \underbrace{A \cos(\omega t) + B \sin(\omega t)}_{\text{齐次解}} uc(t)=特解 Uin+齐次解 Acos(ωt)+Bsin(ωt)
利用初始条件 u c ( 0 ) = u 0 u_c(0) = u_0 uc(0)=u0和 i ( 0 ) = i 0 i(0) = i_0 i(0)=i0:
-
代入 t = 0 t = 0 t=0:
u c ( 0 ) = U in + A = u 0 ⟹ A = u 0 − U in u_c(0) = U_{\text{in}} + A = u_0 \implies A = u_0 - U_{\text{in}} uc(0)=Uin+A=u0⟹A=u0−Uin -
求导求初始电流:
d u c d t = − ω A sin ( ω t ) + ω B cos ( ω t ) \frac{du_c}{dt} = -\omega A \sin(\omega t) + \omega B \cos(\omega t) dtduc=−ωAsin(ωt)+ωBcos(ωt)
i ( 0 ) = C ⋅ d u c d t ∣ t = 0 = C ω B = i 0 ⟹ B = i 0 C ω = i 0 L C i(0) = C \cdot \left.\frac{du_c}{dt}\right|_{t=0} = C \omega B = i_0 \implies B = \frac{i_0}{C \omega} = i_0 \sqrt{\frac{L}{C}} i(0)=C⋅dtduc t=0=CωB=i0⟹B=Cωi0=i0CL
4. 最终表达式
电容电压
u c ( t ) = U in + ( u 0 − U in ) cos ( ω t ) + i 0 L C sin ( ω t ) u_c(t) = U_{\text{in}} + (u_0 - U_{\text{in}})\cos(\omega t) + i_0 \sqrt{\frac{L}{C}} \sin(\omega t) uc(t)=Uin+(u0−Uin)cos(ωt)+i0CLsin(ωt)
电感电流
对 u c ( t ) u_c(t) uc(t)求导并乘以 C C C:
i ( t ) = C d u c d t = − C ω ( u 0 − U in ) sin ( ω t ) + i 0 cos ( ω t ) i(t) = C \frac{du_c}{dt} = -C \omega (u_0 - U_{\text{in}})\sin(\omega t) + i_0 \cos(\omega t) i(t)=Cdtduc=−Cω(u0−Uin)sin(ωt)+i0cos(ωt)
将 ω = 1 L C \omega = \frac{1}{\sqrt{LC}} ω=LC1代入后化简:
i ( t ) = − u 0 − U in L C sin ( ω t ) + i 0 cos ( ω t ) i(t) = -\frac{u_0 - U_{\text{in}}}{\sqrt{\frac{L}{C}}} \sin(\omega t) + i_0 \cos(\omega t) i(t)=−CLu0−Uinsin(ωt)+i0cos(ωt)