20250221 NLP

server/2025/2/27 6:20:20/

1.向量和嵌入

https://zhuanlan.zhihu.com/p/634237861

encoder的输入就是向量,提前嵌入为向量

二.多模态文本嵌入向量过程


1.文本预处理

文本tokenizer之前需要预处理吗?

是的,文本tokenizer之前通常需要对文本进行预处理。预处理步骤可以包括以下内容:

1. 标准化

  • 大小写转换:将文本转换为统一大小写(通常是小写)以减少词汇表大小。
  • 去除标点符号:除去不必要的标点符号,保持文本的简洁。

2. 分词准备

  • 去除空白:清除多余的空格或换行符。
  • 特殊字符处理:处理特殊字符或符号,以确保分词的准确性。

3. 其他处理

  • 停用词过滤:根据任务需要,可以去除常见但无意义的停用词(如“的”、“和”等)。
  • 词干提取或词形还原:将单词还原到其基本形式,以统一表示。

这些预处理步骤帮助提高tokenizer的效率和准确性,确保生成的token序列更具一致性和可用性。

当然,这里是一个简单的文本预处理示例:

原始文本

"What is the animal?"

预处理步骤

  1. 大小写转换

    • 将文本转换为小写:
      "what is the animal?"
      
  2. 去除标点符号

    • 去掉问号:
      "what is the animal"
      
  3. 去除多余空格

    • 确保没有多余空格:
      "what is the animal"
      
  4. 停用词过滤(可选)

    • 如果需要,可以去掉停用词(如"is", "the"),具体取决于任务需求:
      "what animal"
      
  5. 词干提取或词形还原(可选)

    • 将单词还原到词干形式(如“running”变为“run”):
      "what animal"
      

结果

经过预处理,文本更为简洁,适合于tokenization和后续处理。预处理后的文本可以被tokenizer进一步分割为token序列,如:

["what", "animal"]

这些步骤帮助确保tokenizer的输出一致且易于模型处理。

2.tokenizer 字节对编码

例如BPE、WordPiece等分词模型构建词汇表(['low', 'est']),添加自增索引。

BPE(Byte Pair Encoding)本身不需要训练,但它确实需要一个过程来构建词汇表。这涉及从文本中统计频率和合并字符对。以下是一个示例来说明这个过程:

BPE构建过程示例

假设文本数据
"banana", "bandana"
步骤1:初始化
  • 将每个单词分解为字符序列:
    • b a n a n a
    • b a n d a n a
步骤2:统计频率
  • 统计所有相邻字符对的出现频率:
    • 'b a':2次
    • 'a n':3次
    • 'n a':3次
    • 'a n':3次
    • 'n d':1次
    • 'd a':1次
步骤3:合并高频对
  • 合并出现频率最高的字符对 'a n':
    • b an a n a
    • b an d a n a
步骤4:重复过程
  • 再次统计字符对:

    • 'b an':2次
    • 'an a':2次
    • 'n a':2次
    • 'an d':1次
    • 'd a':1次
  • 合并 'an':

    • ban a n a
    • ban d a n a
  • 继续合并,直到达到预定义的词汇表大小。

最终词汇表

  • 通过多次合并,最终得到一个包含字符和子词的词汇表:
    ['b', 'a', 'n', 'd', 'an', 'ban']
    

总结

  • BPE通过合并高频字符对,构建出一个高效的子词词汇表。
  • 这个过程不需要训练参数,但需要从数据中统计和合并字符对以创建词汇表。

3.embedding

通过子词索引在嵌入表中查找对应的嵌入向量。相似的语义信息的挨着。

文本嵌入表需要训练吗?还是LLM预训练模型自带的

文本嵌入表通常是需要训练的,但它可以是LLM预训练模型的一部分。在大型语言模型(LLM)的预训练过程中,嵌入表会随着模型其他参数一起优化,以便更好地捕捉词汇的语义信息。

两种常见情况

  1. 预训练模型自带

    • 许多大型语言模型在发布时已经包含了训练好的文本嵌入表。
    • 使用这些模型时,嵌入表可以直接应用于新任务。
  2. 自定义训练

    • 如果你使用自己的数据进行微调或训练新的模型,文本嵌入表会在训练过程中更新。
    • 嵌入表的参数会随着其他模型参数一起通过反向传播进行优化。

总结

文本嵌入表可以是预训练模型的一部分,也可以在特定任务中通过微调进行更新。嵌入表的质量对模型理解和生成文本的能力有重要影响。

在多模态大语言模型(MLLM)中,文本嵌入表可以是静态的,也可以是动态的,具体取决于模型的设计和使用的技术。

静态嵌入

  • 定义:每个词在训练开始时被分配一个固定的向量。
  • 特征
    • 嵌入在训练过程中不随上下文变化。
    • 常用于早期的嵌入技术,如Word2Vec和GloVe。
  • 优点:计算效率高,易于实现。
  • 缺点:无法捕捉词的上下文特征和多义性。

动态嵌入

  • 定义:词的嵌入根据上下文动态生成。
  • 特征
    • 嵌入向量在每个输入实例中可能不同。
    • 使用模型如BERT、GPT等。
  • 优点:能够更好地理解上下文,处理多义词。
  • 缺点:计算复杂度较高。

在MLLM中的应用

  • 静态嵌入:在一些简单或资源受限的应用中可能仍然使用。
  • 动态嵌入:在需要深度理解和复杂推理的任务中更为常见。

总结

在现代多模态模型中,动态上下文嵌入越来越普遍,它们能够提供更丰富的语义信息,适合复杂的跨模态任务。


http://www.ppmy.cn/server/170955.html

相关文章

深度学习批次数据处理的理解

基础介绍 在计算机视觉深度学习网络中,在训练阶段数据输入通常是一个批次,即不是一次输入单张图片,而是一次性输入多张图片,而神经网络的结构内部一次只能处理一张图片,这时候很自然就会考虑为什么要这样的输入&#…

xenomai4的dovetail学习(2)——oob和中断管理

文章目录 OUT-OF-BAND启用和禁用stage升级oob中断通知oob irq进入/退出evl禁用/启用CPU中断禁用/启用oob中断oob的IPI(Inter-Processor Interrupt)注入IRQ拓展 IRQ work API OUT-OF-BAND启用和禁用 在将中断送到带外处理程序之前,需要启用oo…

QT中日志的使用案例 || 自动创建、管理、保存QT日志数据

目录 1.quiwidget.cpp 2.widget.cpp 3.widget.h 4.在需要记录日志的地方直接将信息插入即可 1. 释放 m_fileLog 和 m_textStream 1.1 为什么要关闭和删除 m_fileLog 和 m_textStream? 1.2 如果不这样做会有什么坏处? 3. 总结 4.参考文章 需求分析…

陀螺匠·企业助手v1.8 产品介绍

陀螺匠企业助手是一套采用Laravel 9框架结合Swoole高性能协程服务与Vue.js前端技术栈构建的新型智慧企业管理与运营系统。该系统深度融合了客户管理、项目管理、审批流程自动化以及低代码开发平台,旨在为企业提供一站式、数字化转型的全方位解决方案,助力…

保姆级! 本地部署DeepSeek-R1大模型 安装Ollama Api 后,Postman本地调用 deepseek

要在Postman中访问Ollama API并调用DeepSeek模型,你需要遵循以下步骤。首先,确保你有一个有效的Ollama服务器实例运行中,并且DeepSeek模型已经被加载。 可以参考我的这篇博客 保姆级!使用Ollama本地部署DeepSeek-R1大模型 并java通过api 调用 具体的代码实现参考我这个博…

Touchgfx控件 BOX和textArea

(一)BOX 是TouchGFX中最轻量级的控件之一,因为它不需要读取任何像素数据或进行任何复杂计算。 因此,大部分平台会将方框视为非常快速的控件。特性如下: (1)一般用来显示背景或者覆盖。 (2)不会产…

AOP进阶-05.连接点

一.连接点 JoinPoint有两个,要使用org,aspectj.lang package com.gjw.aop;import lombok.extern.slf4j.Slf4j; import org.aspectj.lang.ProceedingJoinPoint; import org.aspectj.lang.annotation.Around; import org.aspectj.lang.annotation.Aspect; import org…

low rank decomposition如何用于矩阵的分解

1. 什么是矩阵分解和低秩分解 矩阵分解是将一个矩阵表示为若干结构更简单或具有特定性质的矩阵的组合或乘积的过程。低秩分解(Low Rank Decomposition)是其中一种方法,旨在将原矩阵近似为两个或多个秩较低的矩阵的乘积,从而降低复…