【知识】深度学习中,应该先zero_grad还是先backward?

server/2025/2/22 20:56:37/

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~

目录

抛出问题

各大GPT的回答

ChatGPT-4o

ChatGPT-o3-mini-high

Kimi-长思考

Deepseek-R1

Grok3

Pytorch官方教程中


抛出问题

以下哪种方式是正确的?
方式一:

output = model(inputs)
loss = criterion(output, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()

方式二:

output = model(inputs)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()

各大GPT的回答

ChatGPT-4o

最终答案:方式一

详细回答内容:

深度学习中,使用优化器进行梯度更新时,optimizer.zero_grad()loss.backward()optimizer.step() 的调用顺序非常重要。我们来分析一下这两种方式:

正确的顺序:

方式一是正确的做法。

  • optimizer.zero_grad() 应该在 loss.backward() 之前调用,用来清除之前的梯度。否则,梯度会累积,导致错误的更新。
  • loss.backward() 用来计算当前的梯度。
  • optimizer.step() 会基于计算出的梯度来更新模型的参数。

为什么方式二不太合适?

方式二 中,optimizer.zero_grad() 被放在了梯度更新之后。这样会导致你在每次 backward()step() 之前没有清理上一轮的梯度,而梯度计算是基于前一次的梯度累加的,可能导致梯度累加错误,因此会导致训练结果不符合预期。

总之,正确的顺序是:

  1. 清空梯度 (optimizer.zero_grad())
  2. 计算梯度 (loss.backward())
  3. 更新参数 (optimizer.step())

这就是常见的标准训练循环顺序。

ChatGPT-o3-mini-high

最终答案:方式一

详细回答内容:

方式一是正确的。

深度学习的训练过程中,通常的步骤是:

  1. 前向传播:通过模型计算预测输出 (output = model(inputs))。
  2. 计算损失:使用损失函数计算预测输出与标签的差异 (loss = criterion(output, labels))。
  3. 梯度清零:每次开始反向传播之前,需要将梯度清零,以免梯度累加 (optimizer.zero_grad())。
  4. 反向传播:通过 loss.backward() 计算梯度。
  5. 优化步骤:通过 optimizer.step() 更新模型的参数。

在方式二中,optimizer.step() 被调用的位置不太符合常规做法。通常,optimizer.step() 应该在 loss.backward() 之后调用,梯度被计算出来之后进行参数更新,然后再进行 optimizer.zero_grad() 来清零梯度,以防止在下一个迭代中有累积的梯度。

因此,方式一 的顺序是标准和推荐的流程。

Kimi-长思考

最终答案:方式一和方式二都不正确。正确的做法是将 optimizer.zero_grad() 调用在 loss.backward() 之前。

分析两种训练方式的代码逻辑:

方式一:

output = model(inputs)
loss = criterion(output, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
  • 问题所在optimizer.zero_grad() 被调用在 loss.backward()optimizer.step() 之间。

  • 解析

    • optimizer.zero_grad() 是为了清零梯度,防止梯度累加。

    • 然而在方式一中,optimizer.zero_grad() 被调用在 loss.backward() 示例说明:假设模型梯度为 [1, 1]zero_grad() 清零后梯度为 [0, 0]。但随即 loss.backward() 会重新计算梯度并覆盖为新的值。这会导致当前的梯度被清洗,但 backward() 又重新计算了梯度,所以更新时仍然使用正确的梯度。然而,这种方式容易让人误解梯度状态,有逻辑上的困惑

方式二:

output = model(inputs)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
optimizer.zero_grad()
  • 问题所在optimizer.zero_grad() 被调用在 optimizer.step() 之后。

  • 解析

    • loss.backward() 先计算梯度,optimizer.step() 使用这些梯度更新模型参数。

    • 更新完成后,optimizer.zero_grad() 清零梯度,为下一个训练批次做好准备。

    • 这种方式看似合理,但按照习惯和最佳实践,梯度清零通常应该在反向传播之前进行,以确保每次计算的梯度都是全新的,而方式二的做法会保留梯度直到下一次计算时才清零,这与常规理解相悖。

正确的梯度管理流程:

  1. 前向传播:计算模型的输出。

  2. 计算损失:基于输出和目标计算损失。

  3. 清零梯度:调用 optimizer.zero_grad(),确保梯度不会累积。

  4. 反向传播:调用 loss.backward() 计算梯度。

  5. 更新参数:调用 optimizer.step() 更新模型参数。

标准写法:

optimizer.zero_grad()
output = model(inputs)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
  • 这样做的优点是可以确保每次反向传播前梯度被清零,避免梯度累加,同时流程清晰直观。

结论

经过详细分析和比较,正确的调用顺序应该是在反向传播之前清零梯度。因此,方式一和方式二都不是正确的,但根据最佳实践,梯度清零应放置在反向传播之前。用户提供的两种方式都不符合标准的梯度管理流程,而正确的做法是将 optimizer.zero_grad() 放在 loss.backward() 的前面,如标准写法所示。

正确的方式是: 使用以下代码逻辑:

optimizer.zero_grad()  # 清零梯度
output = model(inputs)
loss = criterion(output, labels)
loss.backward()       # 计算梯度
optimizer.step()      # 更新参数

最终答案:方式一和方式二都不正确。正确的做法是将 optimizer.zero_grad() 调用在 loss.backward() 之前

Deepseek-R1

最终答案:方式一

详细回答内容:

在PyTorch训练过程中,正确的方式是方式一。以下是关键分析:

  1. 梯度清零的时机
    反向传播loss.backward())之前,必须通过optimizer.zero_grad()清空梯度。否则,梯度会累积到之前的梯度值上,导致参数更新错误。方式一在反向传播前清零梯度,确保每次反向传播仅基于当前批次的数据计算梯度;而方式二在反向传播后才清零梯度,这可能导致梯度累积(如果在后续操作中未正确处理)。

  2. 标准流程的验证
    PyTorch官方文档和教程均采用方式一的顺序,即zero_grad() → backward() → step()。这是为了避免梯度累积的潜在风险,并确保每次参数更新仅依赖当前批次的梯度。

  3. 方式二的潜在问题
    虽然方式二在严格按循环执行时可能不会导致梯度累积(因每个批次最后清零梯度),但它违背了常规逻辑(梯度应在计算前初始化),且在复杂训练场景(如提前退出循环、异常处理)中更易出错。

正确代码结构(方式一)

output = model(inputs)
loss = criterion(output, labels)
optimizer.zero_grad()  # 先清空梯度
loss.backward()        # 再计算当前批次梯度
optimizer.step()       # 最后更新参数

结论:方式一是正确的,因为它符合梯度管理的标准实践,确保每次参数更新仅依赖当前批次的梯度,避免了潜在的错误。

答案:方式一是正确的。

Grok3

最终答案:方式一

详细回答内容:

要回答“以下哪种方式是正确的?”这个问题,我们需要分析提供的两种训练神经网络的方式:方式一和方式二。这两种方式都涉及标准的神经网络训练步骤,但它们在优化器 zero_grad() 和 step() 的调用顺序上有所不同。让我们逐步分析这两种方式,并结合 PyTorch 中训练循环的逻辑来判断哪一种是正确的。

神经网络训练的基本步骤

在 PyTorch 中,训练神经网络的每一个迭代(batch)通常包括以下步骤:

  1. 前向传播:将输入数据 inputs 传入模型,得到输出 output。
  2. 计算损失:使用损失函数 criterion 比较模型输出和真实标签 labels,计算损失 loss。
  3. 反向传播:调用 loss.backward(),计算损失对模型参数的梯度。
  4. 更新参数:调用 optimizer.step(),根据梯度更新模型参数。
  5. 清零梯度:调用 optimizer.zero_grad(),将优化器中的梯度清零,为下一次迭代做准备。

关键点在于,PyTorch 的梯度是累加的。也就是说,如果不清零梯度,下一次 loss.backward() 计算的梯度会加到已有的梯度上。而在标准的训练过程中,我们通常希望每个批次的梯度是独立的,仅反映当前批次的数据,因此需要在适当的时机清零梯度。

方式一的分析

  • 步骤顺序
    1. 前向传播:output = model(inputs)。
    2. 计算损失:loss = criterion(output, labels)。
    3. 清零梯度:optimizer.zero_grad()。
    4. 反向传播:loss.backward()。
    5. 更新参数:optimizer.step()。
  • 分析
    • 在计算当前批次的梯度之前,optimizer.zero_grad() 首先清零了梯度。
    • 接着,loss.backward() 计算当前批次的梯度,并存储到模型参数的 .grad 属性中。由于之前已经清零,此时的梯度是干净的,仅反映当前批次。
    • 最后,optimizer.step() 使用这些梯度更新参数。
    • 当进入下一个批次时,由于上一次迭代末尾没有额外的梯度操作,梯度会在新一轮的 optimizer.zero_grad() 中再次清零。

这种方式确保了每个批次的梯度计算从零开始,避免了之前批次梯度的干扰。这是 PyTorch 中推荐的标准做法。

方式二的分析

  • 步骤顺序
    1. 前向传播:output = model(inputs)。
    2. 计算损失:loss = criterion(output, labels)。
    3. 反向传播:loss.backward()。
    4. 更新参数:optimizer.step()。
    5. 清零梯度:optimizer.zero_grad()。
  • 分析
    • 先进行前向传播和损失计算。
    • loss.backward() 计算当前批次的梯度。如果之前没有残留梯度(例如在第一次迭代开始时),此时的梯度仅反映当前批次。
    • optimizer.step() 使用这些梯度更新参数。注意,step() 完成后,梯度仍然存在于 .grad 属性中,并未被自动清零。
    • 最后,optimizer.zero_grad() 清零梯度,为下一次迭代准备。
    • 在下一次迭代开始时,由于上一次迭代末尾已经清零了梯度,新的 loss.backward() 也会从零开始计算梯度。

从功能上看,方式二也能正确完成每个批次的训练:计算梯度,更新参数,并在下一次迭代前清零梯度。

两种方式的比较

从表面上看,方式一和方式二在简单的单损失、单批次训练循环中都能正常工作,因为两者都确保了在下一次 loss.backward() 之前梯度被清零。然而,它们之间存在一些细微但重要的差异:

  1. 清零梯度的时机
    • 方式一在每次迭代开始时清零梯度,确保 loss.backward() 始终基于当前批次从零开始计算。
    • 方式二在每次迭代结束时清零梯度,虽然这也能为下一次迭代做好准备,但它假设第一次迭代开始前没有残留梯度。
  2. 鲁棒性
    • 如果在训练循环开始前,模型参数的 .grad 属性中已经存在残留梯度(例如由于之前的计算调用了 loss.backward()),方式二的第一次 loss.backward() 会将当前批次的梯度累加到这些残留梯度上,导致参数更新偏离预期。而方式一由于在开头就清零了梯度,不受这种初始状态的影响,因此更安全。
  3. 标准实践
    • 在 PyTorch 的官方文档和教程中(如 CIFAR-10 示例),训练循环的标准写法始终是将 optimizer.zero_grad() 放在 loss.backward() 之前。这种顺序被广泛接受为最佳实践,因为它清晰地表达了每次迭代从“干净状态”开始的意图。
  4. 扩展性
    • 如果需要实现梯度累加(例如在多个小批次上累加梯度后再更新参数),方式一的结构更自然:只需在累加多次 loss.backward() 后再调用 optimizer.step() 和 optimizer.zero_grad()。而方式二的顺序则需要调整,不够直观。

结论

虽然方式二在理想情况下(即没有残留梯度且每次只处理一个批次)也能正确运行,但方式一有以下优势:

  • 更安全:避免了初始残留梯度的潜在影响。
  • 更符合标准:遵循 PyTorch 社区的惯例和官方推荐。
  • 更清晰:逻辑上强调每次迭代从零开始计算梯度。

因此,在回答“哪种方式是正确的?”时,综合功能性、鲁棒性和惯例,方式一是正确且推荐的方式。

最终答案

方式一

Pytorch官方教程中

Training a Classifier — PyTorch Tutorials 2.6.0+cu124 documentation


http://www.ppmy.cn/server/169933.html

相关文章

使用DeepSeek+本地知识库,尝试从0到1搭建高度定制化工作流(数据分析篇)

7.3. 数据监控与生成本地知识库 目的:监控新生成的小红书文案,记录每一次生成的小红书文案风格。后续根据输入topic,检索与某一topic有关的文案,可以根据先前的文案风格,生成类似风格的文案。实现思路: 1.…

Linux系统配置阿里云yum源,安装docker

配置阿里云yum源 需要保证能够访问阿里云网站 可以先ping一下看看(阿里云可能禁ping,只要能够解析为正常的ip地址即可) ping mirrors.aliyun.com脚本 #!/bin/bash mkdir /etc/yum.repos.d/bak mv /etc/yum.repos.d/*.repo /etc/yum.repos…

DeepSeek动画视频全攻略:从架构到本地部署

DeepSeek 本身并不直接生成动画视频,而是通过与一系列先进的 AI 工具和传统软件协作,完成动画视频的制作任务。这一独特的架构模式,使得 DeepSeek 在动画视频创作领域发挥着不可或缺的辅助作用。其核心流程主要包括脚本生成、画面设计、视频合成与后期处理这几个关键环节。 …

php session数据存储位置选择

PHP session 数据的存储位置可以通过配置文件或者代码来进行设置。默认情况下,session 数据是存储在服务器的文件系统中的。你可以将 session 数据存储在其他地方,例如数据库、缓存等。 基础概念 PHP session默认情况下将数据存储在服务器端的临时文件中…

动态规划算法

动态规划算法模板 public class DynamicProgramming {public int solve(int n, int[] nums) {// Step 1: 初始化 dp 数组,dp[i] 表示从0到i的最优解int[] dp new int[n 1]; // Step 2: 设置初始条件,通常是dp数组的第一个元素dp[0] 0; // 假设从第0个…

python 爬虫教程 0 基础入门 一份较为全面的爬虫python学习方向

文章目录 前言一、Python 爬虫简介二、环境搭建1. 下载 Python2. 安装 Python3. 安装必要的库 三、一个简单的爬虫示例四、应对网站反爬机制五、深入学习方向 前言 以下是一份较为全面的 Python 爬虫教程,涵盖基础知识、环境搭建、简单示例、反爬应对及深入学习方向…

RoboBERT:减少大规模数据与训练成本,端到端多模态机器人操作模型(西湖大学最新)

写在前面&出发点 具身智能融合多种模态,使智能体能够同时理解图像、语言和动作。然而,现有模型通常依赖额外数据集或大量预训练来最大化性能提升,这耗费了大量训练时间和高昂的硬件成本。为解决这一问题,我们提出RoboBERT&…

Web 自动化测试提速利器:Aqua 的 Web Inspector (检查器)使用详解

Web 自动化测试提速利器:Aqua 的 Web Inspector (检查器)使用详解 前言简介一、安装二、Web Inspector 的使用2.1 获取元素定位器(Locators)2.2 将定位器添加到代码2.3 验证定位器2.4 处理 Frames (框架)总结前言 JetBrains 的 Aqua IDE 提供强大的 Web Inspector 工具,帮…