【C++】RBTree(红黑树)模拟实现

server/2025/2/12 12:31:00/

文章目录

后续有时间会增加erase

1.红黑树的概念

红黑树是一种自平衡的二叉搜索树。每个节点额外存储了一个 color 字段 (“RED” or “BLACK”), 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡。

2.红黑树的性质

一棵合法的红黑树必须遵循以下四条性质:

  1. 节点为红色或黑色
  2. 根节点是黑色的 (在不同的实现下,该条性质并非必须满足)
  3. NIL 节点(空叶子节点)为黑色
  4. 红色节点的子节点为黑色
  5. 从根节点到 NIL节点的每条路径上的黑色节点数量相同

3.红黑树的结点

enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;std::pair<K, V> _kv;Colour _col;RBTreeNode(const std::pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};

4.insert函数(插入结点)

新节点的默认颜色是红色(如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质4不能有连在一起的红色节点,此时需要对红黑树分情况来讨论)
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
所有插入的情况可分为以下三种:

  • 情况一: cur为红,p为红,g为黑,u存在且为红
  • 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑
  • 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑
	bool Insert(const std::pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED; // 新增节点给红色if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// parent的颜色是黑色也结束while (parent && parent->_col == RED){// 关键看叔叔Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 叔叔存在且为红,-》变色即可if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{if (cur == parent->_left){//     g  //   p   u// c RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//      g  //   p     u//      c RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{Node* uncle = grandfather->_left;// 叔叔存在且为红,-》变色即可if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}

5.左旋、右旋

这里和AVLTree的旋转一样

	void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_right == parent){ppNode->_right = subR;}else{ppNode->_left = subR;}subR->_parent = ppNode;}}

6.总代码

#include<vector>enum Colour
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;std::pair<K, V> _kv;Colour _col;RBTreeNode(const std::pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const std::pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);cur->_col = RED; // 新增节点给红色if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;// parent的颜色是黑色也结束while (parent && parent->_col == RED){// 关键看叔叔Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 叔叔存在且为红,-》变色即可if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{if (cur == parent->_left){//     g  //   p   u// c RotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//      g  //   p     u//      c RotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}else{Node* uncle = grandfather->_left;// 叔叔存在且为红,-》变色即可if (uncle && uncle->_col == RED){parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else // 叔叔不存在,或者存在且为黑{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* ppNode = parent->_parent;parent->_parent = subL;if (parent == _root){_root = subL;_root->_parent = nullptr;}else{if (ppNode->_left == parent){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;}}void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;subR->_left = parent;Node* ppNode = parent->_parent;parent->_parent = subR;if (parent == _root){_root = subR;_root->_parent = nullptr;}else{if (ppNode->_right == parent){ppNode->_right = subR;}else{ppNode->_left = subR;}subR->_parent = ppNode;}}void InOrder(){_InOrder(_root);cout << endl;}bool IsBalance(){if (_root->_col == RED){return false;}int refNum = 0;Node* cur = _root;while (cur){if (cur->_col == BLACK){++refNum;}cur = cur->_left;}return Check(_root, 0, refNum);}private:bool Check(Node* root, int blackNum, const int refNum){if (root == nullptr){//cout << blackNum << endl;if (refNum != blackNum){cout << "存在黑色节点的数量不相等的路径" << endl;return false;}return true;}if (root->_col == RED && root->_parent->_col == RED){cout << root->_kv.first << "存在连续的红色节点" << endl;return false;}if (root->_col == BLACK){blackNum++;}return Check(root->_left, blackNum, refNum)&& Check(root->_right, blackNum, refNum);}void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}private:Node* _root = nullptr;//size_t _size = 0;
};

http://www.ppmy.cn/server/167055.html

相关文章

电赛DEEPSEEK

以下是针对竞赛题目的深度优化方案&#xff0c;重点解决频率接近时的滤波难题和相位测量精度问题&#xff1a; 以下是使用NI Multisim 14.3实现本项目的详细解决方案&#xff1a; 一、基础要求实现方案&#xff08;模块化设计&#xff09; 1. 双频信号发生电路 电路结构&…

elment ui 表格数据打印

通过调用浏览器自带的打印功能&#xff0c;完成对table数据的打印 &#xff08;打印表格必须要去掉表头中的fixed属性&#xff0c;每一列的宽度可以通过 width 来控制&#xff09; <el-table-column width100 prop"code" label""> </el-table-co…

鸿蒙NEXT开发-鸿蒙三方库

基本介绍 三方库是开发者在系统能力的基础上进行了一层具体功能的封装&#xff0c;对其能力进行拓展&#xff0c;提供更加方便的接口&#xff0c;提升开发效率的工具。 我们在之前的课程中学习过如何安装三方库axios了&#xff0c;我们大家可以通过ohpm install ohos/axios进行…

AWS全球加速架构在跨国实时交互系统中的优化实践

背景&#xff1a;跨境电商平台的性能瓶颈 某跨境电商平台&#xff08;为保护客户隐私简称Platform X&#xff09;业务覆盖北美、欧洲、东南亚三大区域&#xff0c;日均活跃用户超50万。其核心业务系统包含&#xff1a;商品实时竞价模块、跨国直播带货系统、动态定价API服务。…

深入解析 STM32 GPIO:结构、配置与应用实践

理解 GPIO 的工作原理和配置方法是掌握 STM32 开发的基础&#xff0c;后续的外设&#xff08;如定时器、ADC、通信接口&#xff09;都依赖于 GPIO 的正确配置。 目录 一、GPIO 的基本概念 二、GPIO 的主要功能 三、GPIO 的内部结构 四、GPIO 的工作模式 1. 输入模式 2. 输…

Linux之【网络I/O】前世今生(一)

在 Linux之【磁盘I/O】前世今生 一文中&#xff0c;我们介绍了文件I/O 的细节。本文将继续介绍网络I/O的内容。 一、 基本概念 介绍网络I/O前&#xff0c;先了解一些基本概念。 1.1、上下文 CPU 寄存器&#xff0c;是CPU内置的小容量、速度极快的内存。程序计数器&#xff…

MySQL 中可以通过添加主键来节省磁盘空间吗?(译文)

从历史上看&#xff0c;MySQL 不需要在表上定义显式主键&#xff0c;直到今天默认都是这样。不过&#xff0c;这种要求是通过两种复制方法施加的&#xff1a;组复制和 Percona XtraDB 集群 &#xff08;PXC&#xff09;&#xff0c;默认情况下不允许使用没有主键的表。对于缺少…

独立站赋能反向海淘:跨境代购系统的用户体验与支付解决方案

随着全球化的推进以及消费者对海外商品多样化需求的增长&#xff0c;独立站赋能的反向海淘模式愈发火热&#xff0c;其中跨境代购系统的用户体验与支付解决方案起着关键作用。 一、跨境代购系统的用户体验 界面友好性 独立站的页面设计需要简洁、直观&#xff0c;方便用户快速…