pytorch实现门控循环单元 (GRU)

server/2025/2/5 18:20:38/

 人工智能例子汇总:AI常见的算法和例子-CSDN博客  

特性GRULSTM
计算效率更快,参数更少相对较慢,参数更多
结构复杂度只有两个门(更新门和重置门)三个门(输入门、遗忘门、输出门)
处理长时依赖一般适用于中等长度依赖更适合处理超长时序依赖
训练速度训练更快,梯度更稳定训练较慢,占用更多内存

例子:

import torch
import torch.nn as nn
import torch.optim as optim
import random
import matplotlib.pyplot as plt# 🏁 迷宫环境(5×5)
class MazeEnv:def __init__(self, size=5):self.size = sizeself.state = (0, 0)  # 起点self.goal = (size-1, size-1)  # 终点self.actions = [(0,1), (0,-1), (1,0), (-1,0)]  # 右、左、下、上def reset(self):self.state = (0, 0)  # 重置起点return self.statedef step(self, action):dx, dy = self.actions[action]x, y = self.statenx, ny = max(0, min(self.size-1, x+dx)), max(0, min(self.size-1, y+dy))reward = 1 if (nx, ny) == self.goal else -0.1done = (nx, ny) == self.goalself.state = (nx, ny)return (nx, ny), reward, done# 🤖 GRU 策略网络
class GRUPolicy(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(GRUPolicy, self).__init__()self.gru = nn.GRU(input_size, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x, hidden):out, hidden = self.gru(x, hidden)out = self.fc(out[:, -1, :])  # 只取最后时间步return out, hidden# 🎯 训练参数
env = MazeEnv(size=5)
policy = GRUPolicy(input_size=2, hidden_size=16, output_size=4)
optimizer = optim.Adam(policy.parameters(), lr=0.01)
loss_fn = nn.CrossEntropyLoss()# 🎓 训练
num_episodes = 500
epsilon = 1.0  # 初始的ε值,控制探索的概率
epsilon_min = 0.01  # 最小ε值
epsilon_decay = 0.995  # ε衰减率
best_path = []  # 用于存储最佳路径for episode in range(num_episodes):state = env.reset()hidden = torch.zeros(1, 1, 16)  # GRU 初始状态states, actions, rewards = [], [], []logits_list = []  for _ in range(20):  # 最多 20 步state_tensor = torch.tensor([[state[0], state[1]]], dtype=torch.float32).unsqueeze(0)logits, hidden = policy(state_tensor, hidden)logits_list.append(logits)# ε-greedy 策略if random.random() < epsilon:action = random.choice(range(4))  # 随机选择动作else:action = torch.argmax(logits, dim=1).item()  # 选择最大值对应的动作next_state, reward, done = env.step(action)states.append(state)actions.append(action)rewards.append(reward)if done:print(f"Episode {episode} - Reached Goal!")# 找到最优路径best_path = states + [next_state]  # 当前 episode 的路径breakstate = next_state# 计算损失logits = torch.cat(logits_list, dim=0)  # (T, 4)action_tensor = torch.tensor(actions, dtype=torch.long)  # (T,)loss = loss_fn(logits, action_tensor)  optimizer.zero_grad()loss.backward()optimizer.step()# 衰减 εepsilon = max(epsilon_min, epsilon * epsilon_decay)if episode % 100 == 0:print(f"Episode {episode}, Loss: {loss.item():.4f}, Epsilon: {epsilon:.4f}")# 🧐 确保 best_path 已经记录
if len(best_path) == 0:print("No path found during training.")
else:print(f"Best path: {best_path}")# 🚀 测试路径(只绘制最佳路径)
fig, ax = plt.subplots(figsize=(6,6))# 初始化迷宫图
maze = [[0 for _ in range(5)] for _ in range(5)]  # 5×5 迷宫
ax.imshow(maze, cmap="coolwarm", origin="upper")# 画网格
ax.set_xticks(range(5))
ax.set_yticks(range(5))
ax.grid(True, color="black", linewidth=0.5)# 画出最佳路径(红色)
for (x, y) in best_path:ax.add_patch(plt.Rectangle((y, x), 1, 1, color="red", alpha=0.8))# 画起点和终点
ax.text(0, 0, "S", ha="center", va="center", fontsize=14, color="white", fontweight="bold")
ax.text(4, 4, "G", ha="center", va="center", fontsize=14, color="white", fontweight="bold")plt.title("GRU RL Agent - Best Path")
plt.show()


http://www.ppmy.cn/server/165202.html

相关文章

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.29 NumPy+Scikit-learn(sklearn):机器学习基石揭秘

2.29 NumPyScikit-learn&#xff1a;机器学习基石揭秘 目录 #mermaid-svg-46l4lBcsNWrqVkRd {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-46l4lBcsNWrqVkRd .error-icon{fill:#552222;}#mermaid-svg-46l4lBcsNWr…

caddy2配置http_basic用于验证用户名密码才允许访问页面

参考&#xff1a; basicauth (Caddyfile指令) — Caddy v2中文文档 1&#xff0c;查看caddy是否已经包含了Basic Auth插件 命令&#xff1a;caddy list-modules | grep http_basic 如果显示&#xff1a; http.authentication.providers.http_basic 则代表包含 Basic Auth 模…

每日一题——滑动窗口的最大值

滑动窗口的最大值 题目描述示例说明 解题思路双端队列的特点实现步骤代码实现&#xff08;C语言&#xff09;代码解析 总结 题目描述 给定一个长度为 n 的数组 num 和滑动窗口的大小 size&#xff0c;找出所有滑动窗口里数值的最大值。 例如&#xff0c;如果输入数组 {2, 3, …

【Java异步编程】基于任务类型创建不同的线程池

文章目录 一. 按照任务类型对线程池进行分类1. IO密集型任务的线程数2. CPU密集型任务的线程数3. 混合型任务的线程数 二. 线程数越多越好吗三. Redis 单线程的高效性 使用线程池的好处主要有以下三点&#xff1a; 降低资源消耗&#xff1a;线程是稀缺资源&#xff0c;如果无限…

衡水市城区小区地图)矢量高清cdr|pdf大图内容测评

&#xff08;衡水市城区小区地图&#xff09;矢量高清cdr|pdf大图&#xff0c;cdr。ai软件打开另保存cdr&#xff0c;ai格式就可以&#xff0c;看样图

SpringBoot 连接Elasticsearch带账号密码认证 ES连接 加密连接

依赖 <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId> </dependency>配置文件 es:ip: 172.23.4.130port: 9200user: elasticpassword: qwertyuiop读取配置文件…

第七章:婴变-React字典功能实战

字典查询 字典查询功能实现import { Component, ReactNode } from "react"; import { Button, Popconfirm, Table, message, Input, Space,Tag } from "antd"; import { instance } from "../../utils/request"; import {SettingOutlined,Search…

腾讯云 AI 代码助手编程挑战赛 + 构建开发板垃圾图片识别AI对话的Copilot

一、前言&#xff1a; 最近公司有一个项目需求需要使用到AI智能识别的功能《垃圾智能AI识别系统》&#xff0c;本人一直从事Web领域开发工作&#xff0c;也没接触过人工智能这个赛道&#xff0c;刚好现在借这个“腾讯云 AI 代码助手编程挑战赛”来了解一下AI写代码相关的流程。…