Canny 边缘检测

server/2025/2/1 9:08:30/

步骤

1.降噪

应用高斯滤波器,以平滑图像,滤除噪声。

边缘检测易受噪声影响,所以使用高斯滤波器平滑图像,降低噪声。

2.梯度

计算图像中每个像素点的梯度大小和方向。

计算大小

Sobel算子是一种常用的边缘检测滤波器,用于计算图像中水平和垂直方向上的梯度变化

就是点乘计算

计算方向

3.非极大值抑制

使用非极大值抑制,消除边缘检测带来的不利影响


4.双阈值检测

应用双阈值检测确定真实和潜在的边缘【双阈值检测

阈值 (minVal 和 maxVal) 是基于梯度大小(即边缘强度)来定义的

  • maxVal(高阈值):
    • 梯度值大于 maxVal 的像素点被直接认为是真正的边缘。
  • minVal(低阈值):
    • 梯度值小于 minVal 的像素点被忽略,认为不是边缘。
  • 梯度值介于 minVal 和 maxVal 之间:
    • 如果这些像素点与高于 maxVal 的边缘像素相连,则保留为边缘。
    • 如果没有相连,则丢弃。

实现

它有现成库可以调用啊

import cv2
import matplotlib.pyplot as plt
import numpy as np# 读取图像
image_path = r"D:\python\NAFNet-main\demo\tooth.png"  # 替换为你的图片路径
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)# 高斯模糊去噪
blurred = cv2.GaussianBlur(image, (5, 5), 0)# Canny 边缘检测
edges = cv2.Canny(blurred, threshold1=5, threshold2=200)#这边就是最大最小边缘# 显示原图和边缘检测结果
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.title("Original Image")
plt.imshow(image, cmap="gray")
plt.axis("off")plt.subplot(1, 2, 2)
plt.title("Canny Edge Detection")
plt.imshow(edges, cmap="gray")
plt.axis("off")plt.tight_layout()
plt.show()

最后结果


http://www.ppmy.cn/server/164026.html

相关文章

【fly-iot飞凡物联】(20):2025年总体规划,把物联网整套技术方案和实现并落地,完成项目开发和课程录制。

前言 fly-iot飞凡物联专栏: https://blog.csdn.net/freewebsys/category_12219758.html 1,开源项目地址进行项目开发 https://gitee.com/fly-iot/fly-iot-platform 完成项目开发,接口开发。 把相关内容总结成文档,并录制课程。…

android studio生成jsk

JKS 文件(Java KeyStore)是 Android 开发中用于签名 APK 的密钥库文件。它包含用于签名的私钥和公钥,并保护其不被未授权使用。 在 Android 开发中,所有的 APK 文件在发布之前必须使用签名密钥进行签名: 调试签名&am…

【C++】类与对象(中)

🦄 个人主页: 小米里的大麦-CSDN博客 🎏 所属专栏: 小米里的大麦——C专栏_CSDN博客 🎁 代码托管: 小米里的大麦的Gitee仓库 ⚙️ 操作环境: Visual Studio 2022 文章目录 1. 类的6个默认成员函数传道解惑:Q1:e1——类…

NVIDIA GPU介绍:概念、序列、核心、A100、H100

概述 入职一家大模型领域创业公司,恶补相关知识。 概念 一些概念: HPC:High Performance Computing,高性能计算SoC:System on Chip,单片系统FLOPS:Floating Point Operations Per Second&am…

【2】阿里面试题整理

[1]. 说一下Java与C的区别。 Java和C是两种在软件开发领域应用非常广泛的语言,但它们的设计理念和应用场景有所不同。 Java是一种基于JVM的解释型语言,具有跨平台性,使用自动垃圾回收机制,这使得开发者可以更专注于业务逻辑&…

python学opencv|读取图像(五十)使用addWeighted()函数实现图像加权叠加效果

【1】引言 前序学习进程中,学习了图像互相叠加的不同操作方法,包括add()函数直接叠加BGR值和使用bitwise()函数对BGR值进行按位计算叠加等,相关文章链接包括且不限于: python学opencv|读取图像(四十二)使…

精准化糖尿病知识问答(LLM+机器学习预测模型)

精准化糖尿病知识问答(LLM机器学习预测模型) 关键词:精准化;糖尿病(慢病) 这里主要是对APP部署途径的叙述,在这之前讨论两个问题: 慢性疾病适用什么样的预测模型。对于糖尿病等慢病…

Linux 内核中的高效并发处理:深入理解 hlist_add_head_rcu 与 NAPI 接口

在 Linux 内核的开发中,高效处理并发任务和数据结构的管理是提升系统性能的关键。特别是在网络子系统中,处理大量数据包的任务对性能和并发性提出了极高的要求。本文将深入探讨 Linux 内核中的 hlist_add_head_rcu 函数及其在 NAPI(网络接收处理接口)中的应用,揭示这些机制…