NHANES数据挖掘|特征变量对死亡率预测的研究设计与分析

server/2025/1/16 9:22:24/

书接上回,应各位临床或在科室的小伙伴们需求,除了多组学和算法开发外,插播关于临床护理方向的数据挖掘,今天分享两篇NHANES的分析文献。

1、时依+中介分析


DOI: 10.1186/s12933-024-02191-5

整体思路

基于 NHANES 数据库(2009-2014),研究了中性粒细胞与淋巴细胞比值(NLR)与高血压患者全因死亡率及心血管死亡率之间的关系。研究共纳入 3067 名高血压患者,通过随访 92 个月 的数据,发现 NLR 的升高与死亡风险呈正相关。

  • 生存分析: 采用 Kaplan-Meier 方法绘制生存曲线,用 Log-Rank 检验组间差异。
  • Cox 回归模型: 多变量加权 Cox 比例风险模型评估 NLR 与全因死亡及心血管死亡的关联。
  • 非线性分析: 使用限制性三次样条(RCS)探讨 NLR 与死亡风险的非线性关系。
  • 预测能力: 使用 ROC 曲线和时间相关 AUC 评估 NLR 的死亡预测能力。
  • 中介分析: 探讨肾小球滤过率(eGFR)在 NLR 与死亡风险之间的中介作用。

变量

年龄、性别、种族、教育水平、吸烟状况、体重指数 (BMI)、糖尿病、心血管疾病 (CVD) 史、糖化血红蛋白 (HbA1c)、高密度脂蛋白胆固醇 (HDL)、低密度脂蛋白胆固醇 (LDL)、总胆固醇 (TC)、甘油三酯 (TG) 和估计肾小球滤过率 (eGFR)

结果


通过限制性三次样条可视化NLR 与高血压患者全因死亡率 ( A ) 和心血管死亡率 ( B ) 之间的关联。风险比根据年龄、性别、种族、BMI、吸烟状况、教育水平、糖尿病、心血管疾病史、HDL、LDL、TG、TC、HbA1c 和 eGFR 进行了调整


NLR 值较高(> 3.5)和较低(≤ 3.5)的生存率 Kaplan–Meier 曲线。A全因死亡率;B心血管死亡率


用于预测全因死亡率( A、B)和心血管死亡率(C、D)的 NLR 的时间相关 ROC 曲线和时间相关 AUC 值(95% 置信区间)


eGFR 对 NLR 与生存率之间关系的中介作用(A,全因死亡;B,心血管死亡)。根据年龄、性别、种族、BMI、吸烟状况、教育水平、糖尿病、心血管疾病史、HDL、LDL、TG、TC 和 HbA1c 进行调整

2、Cox生存+RCS分析


DOI: 10.1186/s12933-024-02173-7

整体思路

NHANES 数据库(2001-2018) 和美国国家死亡指数(NDI),探讨了三种胰岛素抵抗(IR)替代指标(HOMA-IR、TyG 指数和 TyG-BMI 指数)与冠心病(CHD)合并高血压患者全因死亡率之间的关系。通过对 1126 名患者 长达 76 个月的随访数据分析,发现 HOMA-IR 是全因死亡率的可靠预测因子,且其与生存率的关系呈 U 型曲线。

三类指标计算:HOMA-IR: 基于空腹血糖和胰岛素;TyG 指数: 基于甘油三酯和空腹血糖;TyG-BMI 指数: TyG 指数与 BMI 的乘积。

  • Cox 回归模型: 评估不同 IR 替代指标与全因死亡率的线性关系。
  • RCS 分析: 探讨 IR 替代指标与生存状态之间的非线性关系,并确定临界点。
  • 分段 Kaplan-Meier 分析: 验证 HOMA-IR 的分段效应。
  • 模型评估: 使用 ROC 曲线和 AUC 值评估预测能力,并进行分层和交互作用分析。

变量

  1. 人口统计学数据包括年龄、性别、种族、教育水平、婚姻状况和收入-贫困率 (PIR)。
  2. 病史信息包括糖尿病、癌症、心力衰竭、中风、慢性阻塞性肺病 (COPD)、使用降血糖和降脂处方药、吸烟、BMI、腰围和臀围。
  3. 实验室血液检查数据包括低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、总胆固醇(TC)、丙氨酸氨基转移酶(ALT)、白蛋白、碱性磷酸酶(ALP)、天冬氨酸氨基转移酶(AST)、尿素氮、肌酸激酶(CK)、肌酐(Cr)、γ-谷氨酰转移酶(GGT)、乳酸脱氢酶(LDH)、铁、磷、钾、钠、钙、总胆红素、尿酸、糖化血红蛋白(HbA1c)、血红蛋白(Hb)、血小板计数和白细胞计数(WBC)

结果


不同 IR 替代指标与全因死亡率之间的非线性关系。图中红线表示 Log(HR),蓝线表示 95% 置信区间。A HOMA -IR,B TyG 指数,C TyG-BMI 指数


分段 HOMA-IR 生存曲线。A HOMA -IR < 3.59 二分法,B HOMA-IR < 3.59 四分法,C HOMA-IR > 3.59 二分法,D HOMA-IR > 3.59 四分法


HOMA-IR 在完全校正模型中评估全因死亡率的鉴别力和准确性。A ROC和 AUC,B校准曲线

小结

这两篇文章都基于 NHANES 数据库,采用 生存分析 探讨不同生物标志物与特定共病患者长期全因死亡率之间的关系,具有相似的研究思路和分析框架。

第一篇文章关注中性粒细胞与淋巴细胞比值(NLR),通过 Cox 回归模型限制性三次样条(RCS)分析Kaplan-Meier 曲线评估其对高血压患者全因死亡及心血管死亡的预测能力;第二篇文章则聚焦胰岛素抵抗(IR)替代指标(HOMA-IR、TyG 指数和 TyG-BMI 指数),采用类似方法探讨其与冠心病合并高血压患者全因死亡率的 U 型关系。

两者均通过调整多变量模型、非线性分析及分层检验,验证了标志物在不同亚组中的稳定性,并使用 ROC 曲线评估预测能力,关于NHANES的数据挖掘最大痛点在于有效样本,就是要数据清洗,还有各个量表评分的统计。


http://www.ppmy.cn/server/158789.html

相关文章

链路追踪SkyWalking

链路追踪 链路追踪作用链路追踪的关键概念链路追踪的工作原理常用链路追踪工具链路追踪的实现步骤链路追踪的典型场景 SkyWalkingSkyWalking 的主要功能SkyWalking 的架构安装 SkyWalking从 SkyWalking 的官方 GitHub 仓库 下载最新版本。配置后端存储SkyWalking使用&#xff0…

ASP.NET Core 基础知识---依赖注入(DI)---生命周期和作用域

在依赖注入&#xff08;Dependency Injection&#xff0c;简称 DI&#xff09;中&#xff0c;生命周期和作用域是非常重要的概念&#xff0c;它们对于正确设计和实现软件系统具有至关重要的作用。以下是生命周期和作用域在依赖注入中重要性的详细阐述&#xff1a; 生命周期的重…

Jmeter数据库

jmeter之操作数据库 一、下载jdbc 驱动&#xff0c;安装jdbc驱动 2、将驱动存放在4个路径下 &#xff08;1&#xff09;C:\Program Files\Java\jre1.8.0_60\lib &#xff08;2&#xff09;第二个存放的包 C:\Program Files\Java\jre1.8.0_60\lib\ext &#xff08;3&#xf…

【算法学习笔记】32:筛法求解欧拉函数

上节学习的是求一个数 n n n的欧拉函数&#xff0c;因为用的试除法&#xff0c;所以时间复杂度是 O ( n ) O(\sqrt{n}) O(n ​)&#xff0c;如果要求 m m m个数的欧拉函数&#xff0c;那么就会花 O ( m n ) O(m \sqrt{n}) O(mn ​)的时间。如果是求连续一批数的欧拉函数&#x…

Windows图形界面(GUI)-QT-C/C++ - Qt图形绘制详解

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 目录 Qt绘图基础 QPainter概述 基本工作流程 绘图事件系统 paintEvent事件 重绘机制 文字绘制技术 基本文字绘制 ​编辑 高级文字效果 基本图形绘制 线条绘制 ​编辑 形状绘制 …

Flink (五) :DataStream API (二)

1. Transformations 用户通过算子能将一个或多个 DataStream 转换成新的 DataStream&#xff0c;在应用程序中可以将多个数据转换算子合并成一个复杂的数据流拓扑。 1.1 Map DataStream → DataStream: 输入一个元素同时输出一个元素。下面是将输入流中元素数值加倍的 map f…

lanqiaoOJ 3333:肖恩的排序 ← 双指针+排序(从大到小)

【题目来源】https://www.lanqiao.cn/problems/3333/learning/【题目描述】 肖恩提出了一种新的排序方法。 该排序方法需要一个标准数组 B 和一个待排序数组 A。在确保对于所有位置 i 都有 A[i]>B[i] 的前提下&#xff0c;肖恩可以自由选择 A 数组的排序结果。请计算按照这种…

1.3 k8s-上部署第一个应用程序

本节重点总结&#xff1a; 部署nginx Deploymentkubectl 基础命令 apply对资源进行配置get 查看资源describe 查看资源详细信息logs 查看pod中的日志exec 在pod中的容器环境内执行命令 Deployment 基本概念 Deployment 译名为 部署。在k8s中&#xff0c;通过发布 Deployment…