25/1/12 嵌入式笔记 学习esp32

server/2025/1/14 4:52:49/

了解了一下位选线和段选线的知识:
位选线:

        作用:用于选择数码管的某一位,例如4位数码管的第1位,第2位)

                   通过控制位选线的电平(高低电平),决定当前哪一位数码管处于激活状态。

        示例:

                   假设有4位数码管,位选线分别位D1,D2,D3,D4.

                   如果要显示第2位,设置D2 = LOW或D2 = HIGH,其他位选线设置位相反电平。

段选线:

         作用:用于控制数码管上某一位显示的具体数字或字符。

                    数码管的每一段(如a,b,c,d,e,f,g,dp)对应一个段选线。

          对于共阴极数码管:

                    将某一段的段选线设置为高电平HIHG,该段点亮,设置位LOW,熄灭

          对于共阳则相反。

           示例,要显示数字7,需要点亮段a,b,c.

                      对于共阴极数码管,设置a = HIGH,b=HIGH.c = HIGH,其他位LOW。

意思就是位选线是切换数码管的位,段就是一位数码管的那一小段。

为什么分阴阳极?

1.电路设计灵活,不同的电路设计可能需要不同的电平逻辑。

2.电源和接地方便性,在某些电路中,可能更容易提供高电平或低电平。

3.驱动芯片的兼容性,不同的驱动芯片可能支持不同的电平逻辑。

动态扫描:

数码管上的数字显示都是通过动态扫描完成的。

// 定义位选线引脚
int seg_1 = 5;
int seg_2 = 18;
int seg_3 = 19;
int seg_4 = 21;// 定义位选线数组
int seg_array[4] = {seg_1, seg_2, seg_3, seg_4};// 定义段选线引脚
int a = 32;
int b = 25;
int c = 27;
int d = 12;
int e = 13;
int f = 33;
int g = 26;
int dp = 14;// 定义段选线数组
int led_array[8] = {a, b, c, d, e, f, g, dp};// 定义数字显示逻辑的二维数组(共阴极数码管)
int number_array[10][8] = {{1, 1, 1, 1, 1, 1, 0, 0}, // 0{0, 1, 1, 0, 0, 0, 0, 0}, // 1{1, 1, 0, 1, 1, 0, 1, 0}, // 2{1, 1, 1, 1, 0, 0, 1, 0}, // 3{0, 1, 1, 0, 0, 1, 1, 0}, // 4{1, 0, 1, 1, 0, 1, 1, 0}, // 5{1, 0, 1, 1, 1, 1, 1, 0}, // 6{1, 1, 1, 0, 0, 0, 0, 0}, // 7{1, 1, 1, 1, 1, 1, 1, 0}, // 8{1, 1, 1, 1, 0, 1, 1, 0}  // 9
};// 清屏函数
void clear() {// 关闭所有位选线for (int i = 0; i < 4; i++) {digitalWrite(seg_array[i], HIGH);}// 关闭所有段选线for (int i = 0; i < 8; i++) {digitalWrite(led_array[i], LOW);}
}// 显示数字的函数
void display_number(int order, int number) {// 清屏clear();// 将对应位选线的电平拉低digitalWrite(seg_array[order], LOW);// 显示数字for (int i = 0; i < 8; i++) {digitalWrite(led_array[i], number_array[number][i]);}
}// 4位数码管显示函数
void display_4_number(int number) {// 确保数字在 0 到 9999 之间if (number >= 0 && number < 10000) {// 获取每一位对应的数字int digits[4];for (int i = 3; i >= 0; i--) {digits[i] = number % 10;number /= 10;}// 显示4位数for (int i = 0; i < 4; i++) {display_number(i, digits[i]);delay(5); // 短暂延时,避免闪烁}}
}void setup() {// 设置所有位选线引脚为输出模式,并初始化为高电平(关闭)for (int i = 0; i < 4; i++) {pinMode(seg_array[i], OUTPUT);digitalWrite(seg_array[i], HIGH);}// 设置所有段选线引脚为输出模式,并初始化为低电平(关闭)for (int i = 0; i < 8; i++) {pinMode(led_array[i], OUTPUT);digitalWrite(led_array[i], LOW);}
}void loop() {// 显示数字 34display_4_number(34);
}

按键实验

//定义开关引脚
int led_pin = 2;
int button_pin = 14;
//记录led状态是否更改过的值
bool status = false;
int led_logic = 0; // LED 的当前状态
void setup(){//配置引脚模式pinMode(led_pin,OUTPUT);pinMode(button_pin,INPUT_PULLDOWN);
}void loop(){//按键消抖//如果当前按钮与上次不同,说明按钮发生了变化if(digitalRead(button_pin)){//睡眠10ms,如果依然是高电平,说明是按下并非抖动delay(500);if(digitalRead(button_pin)&& !status){led_logic = !led_logic;digitalWrite(led_pin,led_logic);//修改statusstatus = !status;}else if(digitalRead(button_pin)){status = false;}}}

INPUT_PULLDOWN表示启用内部下拉电阻。

status:用于记录按钮是否已经触发过状态切换,避免按钮按下时多次出发LED状态的切换。

按钮消抖逻辑,状态切换:status作用时确保每次按钮按下只触发一次状态切换。切换LED状态后,将status设置位true,避免重复触发。

宏定义与变量定义的区别:

PWM呼吸灯

占空比:一个周期内高电平出现时间占总的比例

频率:1秒内信号从高电平到低电平再回到高电平的次数,一秒钟PWM的周期次数

PWM主要通过输出不同频率,占空比的方波,实现固定频率或平均电压输出,,频率固定,改变占空比可改变输出电压。

analogWrite函数:在指定的引脚上输出一个PWM信号,通过改变PWM信号的占空比,控制输出电平的平均值,从而实现对LED亮度、电机速度等的调整。

函数实现呼吸灯

#define LED_PIN 12void setup(){//配置GPIO输出pinMode(LED_PIN,OUTPUT);}
void loop(){//实现渐亮效果for(int i=0;i<256;i++){analogWrite(LED_PIN,i);delay(10);}//实现渐灭效果for(int i=255;i>=0;i--){analogWrite(LED_PIN,i);delay(10);}
}

普通实现

#define FREQ 2000       // PWM 频率
#define CHANNEL 0       // PWM 通道
#define RESOLUTION 8    // PWM 分辨率(8 位 = 0~255)
#define LED 12          // LED 引脚void setup() {// 配置 LEDC 通道ledcSetup(CHANNEL, FREQ, RESOLUTION);// 将 LEDC 通道绑定到指定引脚ledcAttachPin(LED, CHANNEL);
}void loop() {// 实现渐亮效果for (int i = 0; i < (1 << RESOLUTION); i++) {ledcWrite(CHANNEL, i); // 设置 PWM 占空比delay(10);             // 延迟 10ms}// 实现渐灭效果for (int i = (1 << RESOLUTION) - 1; i >= 0; i--) {ledcWrite(CHANNEL, i); // 设置 PWM 占空比delay(10);             // 延迟 10ms}
}

ADC模数转换器

串口监视器是 Arduino IDE 提供的一个工具,用于通过串口通信与开发板(如 Arduino、ESP32 等)进行数据交互。它的主要作用是:1调试和监控程序运行,2.发送数据到开发板,3.实时查看传感器数据。4.交互式控制。

串口通信(Serial Communication)是一种通过串行接口逐位传输数据的通信方式。与并行通信(同时传输多个位)不同,串口通信一次只传输一个位,适合长距离传输和减少硬件复杂性。

波特率是串口通信中数据传输速率的度量,表示每秒传输的符号数(Symbols per second)。每个符号可以代表一个或多个位。

#define POT 26  // 定义电位计连接的引脚int pot_value;  // 用于存储电位计的模拟输入值void setup() {// 设置串口通信波特率Serial.begin(9600);// 设置引脚为输入模式(可选)pinMode(POT, INPUT);
}void loop() {// 读取电位计的模拟输入值pot_value = analogRead(POT);// 打印模拟输入值到串口监视器Serial.println(pot_value);// 延迟 50 毫秒delay(50);
}

http://www.ppmy.cn/server/158184.html

相关文章

二、BIO、NIO编程与直接内存、零拷贝

一、网络通信 1、什么是socket&#xff1f; Socket 是应用层与 TCP/IP 协议族通信的中间软件抽象层&#xff0c;它是一组接口&#xff0c;一般由操作 系统提供。客户端连接上一个服务端&#xff0c;就会在客户端中产生一个 socket 接口实例&#xff0c;服务端每接受 一个客户端…

An FPGA-based SoC System——RISC-V On PYNQ项目复现

本文参考&#xff1a; &#x1f449; 1️⃣ 原始工程 &#x1f449; 2️⃣ 原始工程复现教程 &#x1f449; 3️⃣ RISCV工具链安装教程 1.准备工作 &#x1f447;下面以LOCATION代表本地源存储库的安装目录&#xff0c;以home/xilinx代表在PYNQ-Z2开发板上的目录 ❗ 下载Vivad…

Lua语言的软件工程

Lua语言的软件工程 引言 在软件工程领域&#xff0c;编程语言的选择对项目的成功与否有着至关重要的影响。Lua语言作为一种轻量级、高效、可扩展的脚本语言&#xff0c;近年来在游戏开发、嵌入式系统以及其他高性能应用程序中得到了广泛应用。本文将深入探讨Lua语言的特点、优…

C语言基本知识复习浓缩版:数组

所谓数组&#xff08;Array&#xff09;&#xff0c;就是一系列数据的集合。这些数据具有相同的类型&#xff0c;并且在内存中挨着存放&#xff0c;彼此之间没有缝隙。换句话说&#xff0c;数组用来存放多份数据&#xff0c;但是它有两个要求&#xff1a; 这些数据的类型必须相…

Linux物理地址到虚拟地址的映射

相关理论&#xff1a; Linux中用户空间是无法直操作寄存器的&#xff0c;需要先将寄存器对应的物理地址通过转换成虚拟地址然后在进行操作。 高性能处理器一般会提供一个内存管理单元&#xff08;MMU&#xff09;,该单元辅助操作系统进行内存管理&#xff0c;提供虚拟地址和物理…

网工考试——数据链路层、网络层、传输层

1、纠错和检错 基本概念&#xff1a;一个帧包含m个数据位&#xff08;报文&#xff09;和r个冗余位&#xff08;校验位&#xff09;&#xff0c;假设帧的总长度为n&#xff0c;则有nmr&#xff0c;包含数据和校验位的n位单元通常称为n位码字 海明码距&#xff1a;是两个码字中…

区块链-不可篡改

为什么区块链是不可纂改&#xff1f; 密码学哈希函数&#xff1a;每个区块都包含一个唯一的哈希值&#xff0c;这个哈希值是根据该区块内的所有交易数据以及其他信息&#xff08;如前一个区块的哈希值&#xff09;计算出来的。如果区块内的任何信息被更改&#xff0c;即使只是一…

口碑很好的国产LDO芯片,有哪些?

在几乎任何一个电路设计中&#xff0c;都可能会使用LDO&#xff08;低压差线性稳压器&#xff09;这个器件。 虽然LDO不是什么高性能的IC&#xff0c;但LDO芯片市场竞争异常激烈。最近几年&#xff0c;诞生了越来越多的精品国产LDO&#xff0c;让人看得眼花缭乱。 业内人士曾经…