STM32内置Flash

server/2025/1/15 13:53:31/

一、原理

 利用flash存储用户数据需要注意查看,用户数据是否会覆盖芯片运行程序。

IAP(在程序中编程)利用程序修改程序本身,和OTA是一个原理。IAP在程序中编程支持任意一种通信下载。

ICP(在电路中编程,通过外接引脚下载),每次下载会将程序完全更新。JTAG和SWD为仿真器下载程序,例如JLINK-JTAG和STLNIK-SWD。串口下载(手册中系统Bootload硬件有说明)使用的时系统存储器的Bootload。

 1、STM32的存储器映像

2、个人理解的Bootload原理

 3、STM32中容量产品闪存容量分布情况

可以看到的主存储器和信息块属于flash,闪存存储器不属于flash,相当于单独的外设。闪存存储器相当于上面信息块和主存储器的管理员,用于管理擦除和编程(读取flash直接进行指针读取即可,无需借用存储器)。

  1. STM32内部的flash只分成了页,起始地址为0x0800 0000,直到0x0801 FFFF,一共128K,每K一页,可以看到,以000、400、800、C00结尾的都是页起始地址。
  2. 系统存储区容量为2K,起始地址,存储系统Bootload内容。容量2K。
  3. 用户选项字节为16Byte,起始地址为0x1FFF F800 ,容量16Byte
  4. 用户选项字节和启动程序代码(系统存储区)也是flash,但是不计算在闪存容量中,闪存容量一般指程序存储区flash。
  5. 闪存存储器接口寄存器起始地址为0x4002 2000,属于外设,在外设存储区内

 

4、flash基本结构

5、flash擦除和编程详细内容

5.1、flash解锁

通过键寄存器写入指定的键值实现。RDPRT是解除读保护的密钥。将flash_cr重新置lock=1可锁住flash_cr。

5.2、使用指针访问存储器

volatile:

  1. 在c语言中表示易变的数据,防止编译器优化(编译器自动去除无用的繁杂代码)。
  2. STM32中有工作组寄存器,类似cache,工作速度快,但是使用的变量可能是程序中变量的映射。若程序为多线程或者中断,改变了此变量,会造成工作组寄存器和源变量值不一致,导致程序异常。通过volatile可以高速编译器变量需要实时注意是否更改。

通过*((__IO uint16_t *)(0x0800 0000))通过程序取出地址0x0800 0000地址的寄存器的数据,并通过uint16_t类型(可根据具体需求)返还。也可通过此形式直接指定指定地址的值。flash安全程度较高,需要提前解锁。若写入SRAM则不需要。

5.3、程序存储区编程

写入只能通过地址防止,进行半字的写入,一次2byte。写入32bit需要分两次,写入8bit可以先进行读出在使用读改写的方式写入。

5.4、程序存储区页擦除,flash写入前必须全擦除为1,只能写入0,不能写入1,根据手册的擦除最小单位进行。

5.5、全擦除

6、选项字节的组织和用途

可以看到表中,有数据和n数据,表示写入正常数据时要在对应的n位写入反码,这样才能够正常有效写入。 写入反码的过程,硬件会自动计算并写入。

WRP:配置flash程序存储区写保护,每位对应保护4个存储页,4*8*4 = 128页,刚好对应中容量的最大字节128K。

 

6.1 、选项字节编程

解锁flash锁后还需要解锁选项字节的锁(也需要先写入Key1,再写入Key2),之后才能操作选项字节。

6.2、选项字节擦除

 7、期间的电子签名

可以通过指定签名运行指定程序来限制程序被盗。 

8、手册

在SystemInit已经打开了HSI。

 

 

 

因为flash的原因,默认写保护使能为0,不使能写保护为1。

 

9、编程

在库文件.c的头部有说明,库中后期增加了XL加大容量的芯片,部分函数只能使用于加大容量的芯片。

9.1存储格式

  •  Intel存储格式为小端存储:即低字节在低地址,高字节在高地址。即L_Byte(低地址) +H_Byte(高地址) ,例如0x482A = 18594。小端存储为 0x48 0x2A。
intel格式(小端存储)bit
Byte10x2A(L_Byte)
76543210
20x48(H_Byte)
15141312111098
  • Motorola存储格式为大端存储:即高字节在低地址,低字节在高地址。即H_Byte(低地址) +L_Byte(高地址) ,例如0x482A = 18594。大端存储为 0x2A 0x48。
Motorola格式(大端存储)bit
Byte10x48(H_Byte)
15141312111098
20x2A(L_Byte)
76543210
  • 字节内部相同高bit在左,低bit在右。例如大端存储和小端字节内存储格式相同。
大端小端相同(bit位相同)
1514131211109876543210
0x48(H_Byte)0x2A(L_Byte)

 9.2为了区分程序存储空间和使用flash存储用户数据的空间大小,限制程序flash。

如果想写一个自定义的Bootload程序在尾部,也可以通过此处更改烧写程序的起始位置,但是要计算Bootload程序的大小、正式程序的大小,防止空间不足 。

右边是片上ram的内存。

9.3 下载配置,根据需要配置下载时如何擦除程序。使用IAP选择页擦除(STM32为扇区擦除选项)

前三个数为程序占用闪存的大小,后面两个相加为占用SRAM的大小。

目前可以看到我这个程序占用flash的大小为5.03KB=5150.72B,flash地址为0x0800 0000,偏移5148B,实际存储空间到0x0800 141C左右。

使用软件核实程序的确存储到了0x0800141C左右。

二、程序实例,STM32 ST-LINK Utility使用见主页文章

1、测试程序中的Flash基本操作单元的功能,flash页写入、flash读取、页擦除、全部擦除。(按键1用PB11、按键2用PB10)

1.1 测试1  (程序中#if (1))

1、程序烧写完成上电,查看OLED显示内容,是否为flash首地址的32bit、16bit、8bit(小端存储,低字节在低地址)

 

2、按下按键PB11可以看到和程序中相同flash程序存储区全部擦除,注意再次烧写程序时需要关闭STM32 ST-LINK Utility,防止冲突

3、重新烧写程序,按下按键PB12可以看到程序存储区中flash中0x0800 0400的页被删除,直到0x0800 0800(每个扇区1K),擦除后为FF

1.2、测试2 (程序中改#if (0))

可以看到0x0800FC00页地址原来的数据。

按下按键PB11或PB10,0x0800FC00和0x0800FC10所在地址的数据写为0x00000000(32bit)和0x0F0F(16bit)。

程序

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Button.h"
#include "MyFlash.h"
int main(void){OLED_Init();ButtonPB11PB10_Init();//测试程序存储区flash数据读取OLED_ShowString(1,1,"Flash:");//OLED_ShowHexNum(2,1,MyFlash_ReadWord(0x08000000),8);OLED_ShowHexNum(3,1,MyFlash_ReadHalfWord(0x08000000),4);OLED_ShowHexNum(4,1,MyFlash_ReadByte(0x08000000),2);while(1){#if (0)  //为真运行//测试程序存储区flash全部擦除和页擦除if(GetButtonPB11PB10() == 1){MyFlash_EraseAll();}else if(GetButtonPB11PB10() == 2){MyFlash_ErasePage(0x08000400);//擦除第二页数据}#else  //测试程序存储区flash写入字和半字if((GetButtonPB11PB10() == 1) || (GetButtonPB11PB10() == 2)){MyFlash_ErasePage(0x0800FC00);MyFlash_ProgramWord(0x0800FC00,0x00000000);//地址0x0800FC00写入半字0x00000000MyFlash_ProgramHalfWord(0x0800FC10,0x0F0F);//地址0x0800FC00写入半字0x0F0FOLED_ShowString(4,4,"W");Delay_ms(500);OLED_ShowString(4,4," ");}#endif}return 0;
}

MyFlash.c

#include "stm32f10x.h"                  // Device header
/*选项字节配置可通过外部的STM32 ST-Link Utility,用户自行使用选项字节容易出现问题*//*** @brief 读取Flash指定地址的字* @param  Address:32位地址*     @arg * @param  *     @arg * @retval None*/
uint32_t MyFlash_ReadWord(uint32_t Address){//对于Address,通过(__IO uint32_t *)变为uint32_t类型数据的指针,通过*取该地址的值return *((__IO uint32_t *)(Address)) ;
}/*** @brief 读取Flash指定地址的半字* @param  Address:32位地址*     @arg * @param  *     @arg * @retval None*/
uint16_t MyFlash_ReadHalfWord(uint32_t Address){//对于Address,通过(__IO uint16_t *)变为uint16_t类型数据的指针,通过*取该地址的值返回return *((__IO uint16_t *)(Address)) ;//uint16_t *表示指向uint16_t数据的指针
}/*** @brief 读取Flash指定地址的字* @param  Address:32位地址*     @arg * @param  *     @arg * @retval None*/
uint8_t MyFlash_ReadByte(uint32_t Address){//对于Address,通过(__IO uint32_t *)变为uint32_t的指针,通过*取该地址的值return *((__IO uint8_t *)(Address)) ;
}/*** @brief 程序存储区flash全部擦除* @param  *     @arg * @param  *     @arg * @retval None*/
void MyFlash_EraseAll(void){FLASH_Unlock();//程序存储区flash页编程解锁FLASH_EraseAllPages();//全部擦除FLASH_Lock();//程序存储区flash页编程关锁
}/*** @brief 程序存储区flash页擦除* @param  Address:需要擦除的页地址*     @arg * @param  *     @arg * @retval None*/
void MyFlash_ErasePage(uint32_t PageAddress){FLASH_Unlock();//程序存储区flash页编程解锁FLASH_ErasePage(PageAddress);//全部擦除FLASH_Lock();//程序存储区flash页编程关锁
}/*** @brief 程序存储区flash指定地址写字* @param  *     @arg * @param  *     @arg * @retval None*/
void MyFlash_ProgramWord(uint32_t Address,uint32_t WriteWord){FLASH_Unlock();//程序存储区flash页编程解锁FLASH_ProgramWord(Address,WriteWord);//指定地址写字FLASH_Lock();//程序存储区flash页编程关锁
}/*** @brief 程序存储区flash指定地址写半字* @param  *     @arg * @param  *     @arg * @retval None*/
void MyFlash_ProgramHalfWord(uint32_t Address,uint16_t WriteWord){FLASH_Unlock();//程序存储区flash页编程解锁FLASH_ProgramHalfWord(Address,WriteWord);//指定地址写半字,写入32bit地址的低地址,STM32flash小端存储,低字节在低位FLASH_Lock();//程序存储区flash页编程关锁
}

MyFlash.h

#ifndef __MYFLASH_H
#define __MYFLASH_H
#include "stm32f10x.h"                  // Device header
uint32_t MyFlash_ReadWord(uint32_t Address);
uint16_t MyFlash_ReadHalfWord(uint32_t Address);
uint8_t MyFlash_ReadByte(uint32_t Address);
void MyFlash_EraseAll(void);
void MyFlash_ErasePage(uint32_t PageAddress);
void MyFlash_ProgramWord(uint32_t Address,uint32_t WriteWord);
void MyFlash_ProgramHalfWord(uint32_t Address,uint16_t WriteWord);#endif

 Button.c

/*** @brief 初始化引脚PB11地开信号接收Button,用于辅助测试看门狗* @param  *     @arg * @param  *     @arg * @retval None*/
void ButtonPB11PB10_Init(void){RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);GPIO_InitTypeDef  GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_10;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStructure);
}/*** @brief 获取PB11的Button是否按下* @param  *     @arg * @param  *     @arg * @retval None*/
uint8_t GetButtonPB11PB10(void){if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_11) == RESET){Delay_ms(10);while(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_11) == RESET);Delay_ms(10);return 1;}if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_10) == RESET){Delay_ms(10);while(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_10) == RESET);Delay_ms(10);return 2;}return 0;
}

Button.h

#ifndef __BUTTON_H
#define __BUTTON_H
#include "stm32f10x.h"                  // Device headeruint8_t GetButtonPB11PB10(void);
void ButtonPB11PB10_Init(void);
#endif

2、 读写内部Flash,通过Flash最后一页内存进行数据存储(上电读取内容、按键更新并写入内容)(按键1用PB11、按键2用PB10)

测试方法:

1、烧写程序后可以看到程序持续运行,此时、OLED显示程序存储区flash的最后一页存储的8Byte数据,第一次使用为0x00000000,可以看到指定的flash第一次读写标志位0xA5A5和0x00等数据已写入。

2、按键PB10可以看到程序存储区flash最后一页存储的前5字节当前数据变为0x1111;0x2222;0x3333;0x4444;按键PB11可以看到数据会自增。

程序

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Button.h"
#include "Store.h"
int main(void){OLED_Init();ButtonPB11PB10_Init();Store_Init();//显示当前Flash最后一页的数据OLED_ShowString(1,1,"Flash:");//while(1){uint8_t Key_Num = GetButtonPB11PB10();//测试按键控制Flash数据更新if(Key_Num == 1){//PB11for(uint8_t i=1;i<5;i++){Store_Data[i]++;}Store_Write();Store_Read();OLED_ShowString(4,1,"PB11");}else if(Key_Num == 2){//PB10Store_Data[1] = 0x1111;Store_Data[2] = 0x2222;Store_Data[3] = 0x3333;Store_Data[4] = 0x4444;Store_Write();Store_Read();OLED_ShowString(4,1,"PB10");}//显示Flash数据OLED_ShowHexNum(2,1,Store_Data[1],4);OLED_ShowHexNum(2,6,Store_Data[2],4);OLED_ShowHexNum(3,1,Store_Data[3],4);OLED_ShowHexNum(3,6,Store_Data[4],4);}return 0;
}

Store.c

#include "stm32f10x.h"                  // Device header
#include "MyFlash.h"#define STORE_START_ADDRESS 0x0800FC00 //写入页的起始地址
#define STORE_COUNT 512
#define STORE_FLAG  0xA5A5
uint16_t Store_Data[STORE_COUNT] = {STORE_FLAG,0};//用RAM对应存储Flash最后一页的数据/*** @brief flash最后一页数据初始化,第一次使用的话默认为0x00* @param  *     @arg * @param  *     @arg * @retval None*/
void Store_Init(void){//对于存储过数据的Flash我们默认使用最后一页的起始地址16bit作为标志if(MyFlash_ReadHalfWord(STORE_START_ADDRESS) == STORE_FLAG){//若不是第一次使用,读出数据for(uint16_t i=0;i<STORE_COUNT;i++){Store_Data[i] = MyFlash_ReadHalfWord(STORE_START_ADDRESS+i*2);}}else{//若是第一次使用,写入0xA5A5标志位和剩余的0x00MyFlash_ErasePage(STORE_START_ADDRESS);//擦除最后一页for(uint16_t i=0;i<STORE_COUNT;i++){MyFlash_ProgramHalfWord(STORE_START_ADDRESS+i*2,Store_Data[i]);//写入}}
}/*** @brief 将SAM的数据(Store_Data)写入flash最后一页* @param  *     @arg * @param  *     @arg * @retval None*/
void Store_Write(void){MyFlash_ErasePage(STORE_START_ADDRESS);//擦除最后一页for(uint16_t i=0;i<STORE_COUNT;i++){MyFlash_ProgramHalfWord(STORE_START_ADDRESS+i*2,Store_Data[i]);//写入}
}/*** @brief 将Flash的数据读出到将SAM的数据(Store_Data)* @param  *     @arg * @param  *     @arg * @retval None*/
void Store_Read(void){for(uint16_t i=0;i<STORE_COUNT;i++){Store_Data[i] = MyFlash_ReadHalfWord(STORE_START_ADDRESS+i*2);}
}

Store.h

#ifndef __STORE_H
#define __STORE_H
#include "stm32f10x.h"                  // Device headerextern uint16_t Store_Data[];
void Store_Init(void);
void Store_Write(void);
void Store_Read(void);#endif

Button.c

/*** @brief 初始化引脚PB11地开信号接收Button,用于辅助测试看门狗* @param  *     @arg * @param  *     @arg * @retval None*/
void ButtonPB11PB10_Init(void){RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);GPIO_InitTypeDef  GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_10;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIO_InitStructure);
}/*** @brief 获取PB11的Button是否按下* @param  *     @arg * @param  *     @arg * @retval None*/
uint8_t GetButtonPB11PB10(void){if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_11) == RESET){Delay_ms(10);while(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_11) == RESET);Delay_ms(10);return 1;}if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_10) == RESET){Delay_ms(10);while(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_10) == RESET);Delay_ms(10);return 2;}return 0;
}

Button.h

#ifndef __BUTTON_H
#define __BUTTON_H
#include "stm32f10x.h"                  // Device headeruint8_t GetButtonPB11PB10(void);
void ButtonPB11PB10_Init(void);
#endif

 MyFlash.c

#include "stm32f10x.h"                  // Device header
/*选项字节配置可通过外部的STM32 ST-Link Utility,用户自行使用选项字节容易出现问题*//*** @brief 读取Flash指定地址的字* @param  Address:32位地址*     @arg * @param  *     @arg * @retval None*/
uint32_t MyFlash_ReadWord(uint32_t Address){//对于Address,通过(__IO uint32_t *)变为uint32_t类型数据的指针,通过*取该地址的值return *((__IO uint32_t *)(Address)) ;
}/*** @brief 读取Flash指定地址的半字* @param  Address:32位地址*     @arg * @param  *     @arg * @retval None*/
uint16_t MyFlash_ReadHalfWord(uint32_t Address){//对于Address,通过(__IO uint16_t *)变为uint16_t类型数据的指针,通过*取该地址的值返回return *((__IO uint16_t *)(Address)) ;//uint16_t *表示指向uint16_t数据的指针
}/*** @brief 读取Flash指定地址的字* @param  Address:32位地址*     @arg * @param  *     @arg * @retval None*/
uint8_t MyFlash_ReadByte(uint32_t Address){//对于Address,通过(__IO uint32_t *)变为uint32_t的指针,通过*取该地址的值return *((__IO uint8_t *)(Address)) ;
}/*** @brief 程序存储区flash全部擦除* @param  *     @arg * @param  *     @arg * @retval None*/
void MyFlash_EraseAll(void){FLASH_Unlock();//程序存储区flash页编程解锁FLASH_EraseAllPages();//全部擦除FLASH_Lock();//程序存储区flash页编程关锁
}/*** @brief 程序存储区flash页擦除* @param  Address:需要擦除的页地址*     @arg * @param  *     @arg * @retval None*/
void MyFlash_ErasePage(uint32_t PageAddress){FLASH_Unlock();//程序存储区flash页编程解锁FLASH_ErasePage(PageAddress);//全部擦除FLASH_Lock();//程序存储区flash页编程关锁
}/*** @brief 程序存储区flash指定地址写字* @param  *     @arg * @param  *     @arg * @retval None*/
void MyFlash_ProgramWord(uint32_t Address,uint32_t WriteWord){FLASH_Unlock();//程序存储区flash页编程解锁FLASH_ProgramWord(Address,WriteWord);//指定地址写字FLASH_Lock();//程序存储区flash页编程关锁
}/*** @brief 程序存储区flash指定地址写半字* @param  *     @arg * @param  *     @arg * @retval None*/
void MyFlash_ProgramHalfWord(uint32_t Address,uint16_t WriteWord){FLASH_Unlock();//程序存储区flash页编程解锁FLASH_ProgramHalfWord(Address,WriteWord);//指定地址写半字,写入32bit地址的低地址,STM32flash小端存储,低字节在低位FLASH_Lock();//程序存储区flash页编程关锁
}

 MyFlash.h

#ifndef __MYFLASH_H
#define __MYFLASH_H
#include "stm32f10x.h"                  // Device header
uint32_t MyFlash_ReadWord(uint32_t Address);
uint16_t MyFlash_ReadHalfWord(uint32_t Address);
uint8_t MyFlash_ReadByte(uint32_t Address);
void MyFlash_EraseAll(void);
void MyFlash_ErasePage(uint32_t PageAddress);
void MyFlash_ProgramWord(uint32_t Address,uint32_t WriteWord);
void MyFlash_ProgramHalfWord(uint32_t Address,uint16_t WriteWord);#endif

3、读写芯片ID

读取STM32指定地址下的原厂id号,和容量。

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
int main(void){OLED_Init();//显示当前Flash最后一页的数据OLED_ShowString(1,1,"F_Size:");//OLED_ShowHexNum(1,8,*((__IO uint16_t *)(0x1FFFF7E0)),4);//我的芯片显示0x80-Flash容量128kBOLED_ShowString(2,1,"UID:");//OLED_ShowHexNum(2,5,*((__IO uint16_t *)(0x1FFFF7E8+0x02)),4);OLED_ShowHexNum(2,9,*((__IO uint16_t *)(0x1FFFF7E8)),4);OLED_ShowHexNum(3,1,*((__IO uint32_t *)(0x1FFFF7E8+0x04)),8);OLED_ShowHexNum(4,1,*((__IO uint32_t *)(0x1FFFF7E8+0x08)),8);while(1){}return 0;
}

感谢江协科技!!!


http://www.ppmy.cn/server/158081.html

相关文章

Linux下文件重定向

文章目录 一 重定向的基本使用1. 标准输出重定向2. 标准错误输出重定向3. 同时重定向标准输出和标准错误输出4. 输入重定向&#xff08;<&#xff09; 二 重定向基本原理1. 文件描述符概念2.什么是文件描述符3. 文件描述符的分配规则初始分配与默认对应关系动态分配规则 4. …

docker--小白--导入timescaledb

先安装好docker,确保docker 可正常访问&#xff0c;可参考上一篇文章 安装镜像 sudo docker pull timescale/timescaledb:latest-pg13 如果出现以下错误&#xff0c;应该是权限问题 从本地文件加载镜像或容器&#xff0c;timescaledb是从docker中导出来的 cat /home/t606/time…

FPGA随记——时钟时序一些基本知识

原文链接&#xff1a;跨时钟域设计-CSDN博客 前言 CDC&#xff08;clock domain crossing&#xff09;检查&#xff08;跨时钟域的检查&#xff09;是对电路设计中同步电路设计的检查。非同步时钟没有固定的相位关系&#xff0c;这样Setup/Hold不满足而产生了亚稳态是无法避免…

功能篇:mybatis中实现缓存

MyBatis 提供了两种级别的缓存&#xff1a;一级缓存&#xff08;本地会话缓存&#xff09;和二级缓存&#xff08;全局缓存&#xff09;。理解这两种缓存的机制对于优化应用程序性能非常重要。 ### 一级缓存 一级缓存是默认开启的&#xff0c;它作用于 SqlSession 级别。当同一…

【前端动效】HTML + CSS 实现打字机效果

目录 1. 效果展示 2. 思路分析 2.1 难点 2.2 实现思路 3. 代码实现 3.1 html部分 3.2 css部分 3.3 完整代码 4. 总结 1. 效果展示 如图所示&#xff0c;这次带来的是一个有趣的“擦除”效果&#xff0c;也可以叫做打字机效果&#xff0c;其中一段文本从左到右逐渐从…

Kafka 深度剖析

Kafka 深度剖析&#xff1a;从基础概念到集群实战 在当今大数据与分布式系统蓬勃发展的时代&#xff0c;Apache Kafka 作为一款极具影响力的分布式发布 - 订阅消息系统&#xff0c;宛如一颗璀璨的明星&#xff0c;照亮了数据流转与处理的诸多场景。它由 LinkedIn 公司于 2010 年…

ThreadLocal 的使用场景

在现代电商平台中&#xff0c;ThreadLocal 常用于以下场景&#xff0c;特别是与线程隔离相关的业务中&#xff0c;以提高性能和简化上下文传递。 1. 用户上下文信息管理 场景&#xff1a;在用户发起的每次请求中&#xff0c;需要携带用户 ID、角色、权限等信息&#xff0c;而这…

Megatron:深度学习中的高性能模型架构

Megatron&#xff1a;深度学习中的高性能模型架构 Megatron 是由 NVIDIA 推出的深度学习大规模预训练模型框架&#xff0c;主要针对大规模 Transformer 架构模型的高效训练与推理。Megatron 大多用于 GPT&#xff08;生成式预训练模型&#xff09;、BERT 等 Transformer 模型的…