Pytorch 三小时极限入门教程

server/2025/1/12 20:20:10/

一、引言

在当今的人工智能领域,深度学习占据了举足轻重的地位。而 Pytorch 作为一款广受欢迎的深度学习框架,以其简洁、灵活的特性,吸引了大量开发者投身其中。无论是科研人员探索前沿的神经网络架构,还是工程师将深度学习技术落地到实际项目,Pytorch 都提供了强大的支持。本教程将带你从零基础开始,一步步深入了解 Pytorch 的核心知识,助你顺利踏上深度学习的征程。

二、Pytorch 基础环境搭建

安装 Anaconda

Anaconda 是一个强大的 Python 包管理器和环境管理器,方便我们创建独立的 Python 开发环境。首先,从 Anaconda 官方网站下载对应操作系统的安装包,一路默认安装即可。安装完成后,打开终端(Linux/Mac)或命令提示符(Windows),输入 conda --version 验证是否安装成功。

创建虚拟环境

使用 conda create -n pytorch_env python=3.8 创建一个名为 pytorch_env 的虚拟环境,这里指定 Python 版本为 3.8,你可以根据实际需求调整。激活虚拟环境,在 Linux/Mac 下使用 source activate pytorch_env,Windows 下使用 activate pytorch_env。

安装 Pytorch

访问 Pytorch 官方网站,根据你的系统配置(如 CUDA 是否可用)选择合适的安装命令。例如,如果你的电脑有 NVIDIA GPU 且支持 CUDA 11.3,安装命令可能为 conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch。如果没有 GPU,则选择 CPU 版本的安装命令,如 conda install pytorch torchvision torchaudio cpuonly -c pytorch。安装完成后,在 Python 交互式环境中输入 import torch,没有报错则说明安装成功。

三、张量(Tensor):深度学习的基石

张量的定义与创建

张量是 Pytorch 中最基本的数据结构,类似于 NumPy 中的数组,但具有更强的功能。可以使用 torch.tensor() 函数从 Python 列表或 NumPy 数组创建张量,例如:

import torchimport numpy as np# 从列表创建张量data_list = [1, 2, 3, 4]tensor_from_list = torch.tensor(data_list)# 从 NumPy 数组创建张量np_array = np.array([5, 6, 7, 8])tensor_from_numpy = torch.from_numpy(np_array)

还可以使用 torch.zeros()、torch.ones()、torch.rand() 等函数创建具有特定形状的全 0、全 1 或随机值张量。

张量的属性与操作

张量具有形状(shape)、数据类型(dtype)等属性。可以通过 .shape 和 .dtype 来访问,例如:

tensor = torch.rand(3, 4)print(tensor.shape)print(tensor.dtype)

张量支持丰富的数学运算,如加法、减法、乘法、除法等,操作符重载使得代码简洁直观:

a = torch.rand(2, 3)b = torch.rand(2, 3)c = a + bd = a * b

同时,也有大量的函数可供调用,像 torch.sum()、torch.mean() 等用于统计计算。

四、自动求导(Autograd):神经网络训练的关键

自动求导原理简介

深度学习中,模型训练的核心是反向传播算法,而 Pytorch 的自动求导机制极大地简化了这一过程。当创建一个张量时,如果设置 requires_grad=True,Pytorch 会记录该张量上的所有操作,构建一个计算图。在反向传播时,利用这个计算图自动计算梯度。

示例:简单函数求导

x = torch.tensor([2.], requires_grad=True)y = x ** 2 + 3 * xy.backward()print(x.grad)

这里定义了一个简单的函数 ,对 x 求导后,x.grad 存储了梯度值,即 在 时的值 7。

 复杂模型中的应用

在构建神经网络时,模型参数都设置为 requires_grad=True。在每一次前向传播计算损失后,通过 loss.backward() 反向传播梯度,然后使用优化器(如 SGD、Adam 等)根据梯度更新参数,实现模型的训练。

五、神经网络模块(nn.Module):构建模型的利器

自定义神经网络

继承 nn.Module 类可以方便地自定义神经网络。首先在 __init__() 函数中定义模型的层结构,如全连接层 nn.Linear,卷积层 nn.Conv2d 等,然后在 forward() 函数中定义数据的前向传播路径。

import torch.nn as nnclass SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc1 = nn.Linear(10, 20)self.fc2 = nn.Linear(20, 1)def forward(self, x):x = torch.relu(self.fc1(x))x = self.fc2(x)return x

这里定义了一个简单的两层全连接神经网络,输入维度为 10,中间层维度为 20,输出维度为 1,中间使用 ReLU 作为激活函数。

预训练模型的使用与微调

Pytorch 提供了丰富的预训练模型,如 ResNet、VGG 等经典的图像分类模型。可以通过 torchvision.models 模块加载预训练模型,然后根据自己的任务需求,修改最后几层的结构并进行微调。例如:

import torchvision.models as modelsresnet = models.resnet18(pretrained=True)# 修改最后一层输出维度为自定义类别数resnet.fc = nn.Linear(resnet.fc.in_features, 10)

这使得在数据量有限的情况下,也能利用预训练模型的强大特征提取能力,快速搭建高性能模型。

六、数据加载与预处理(DataLoader)

数据集类的构建

要使用自己的数据训练模型,需要构建自定义数据集类,继承 torch.utils.data.Dataset。在类中实现 __getitem__() 方法用于获取单个样本及其标签,__len__() 方法返回数据集的大小。例如,对于图像分类数据集:

from torch.utils.data import Datasetimport osimport cv2class ImageDataset(Dataset):def __init__(self, root_dir, transform=None):self.root_dir = root_dirself.image_files = os.listdir(root_dir)self.transform = transformdef __getitem__(self, index):image_path = os.path.join(self.root_dir, self.image_files[index])image = cv2.imread(image_path)image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)label = int(self.image_files[index].split('.')[0])if self.transform:image = self.transform(image)return image, labeldef __len__(self):return len(self.image_files)

数据加载器的使用

使用 torch.utils.data.DataLoader 将数据集封装成可迭代的数据加载器,方便在训练过程中批量获取数据。可以设置批量大小(batch_size)、是否打乱数据(shuffle)等参数,例如:

from torch.utils.data import DataLoaderdataset = ImageDataset(root_dir='data/images', transform=transforms.ToTensor())dataloader = DataLoader(dataset, batch_size=32, shuffle=True)

在训练循环中,通过遍历数据加载器获取批量数据,送入模型进行训练。

七、模型训练与评估

训练循环

模型训练通常包括多个 epoch,每个 epoch 遍历一遍整个数据集。在每个 epoch 内,按批次获取数据,前向传播计算损失,反向传播更新参数。以下是一个简单的训练循环示例:

model = SimpleNet()criterion = nn.MSELoss()optimizer = torch.optim.SGD(model.parameters(), lr=0.01)for epoch in range(10):running_loss = 0.0for i, (inputs, labels) in enumerate(dataloader):optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(dataloader)}')

评估指标与方法

根据任务不同,评估指标各异。对于分类任务,常用准确率(Accuracy),可以通过比较模型预测结果与真实标签计算得出:

correct = 0total = 0with torch.no_grad():for inputs, labels in dataloader:outputs = model(inputs)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = correct / totalprint(f'Accuracy: {accuracy}')

对于回归任务,可能使用均方误差(MSE)、平均绝对误差(MAE)等指标。

八、模型保存与加载

保存模型

可以使用 torch.save() 保存模型的参数或整个模型结构,例如保存模型参数:

torch.save(model.state_dict(), 'model.pth')

若要保存整个模型,包括结构和参数:

torch.save(model, 'whole_model.pth')

加载模型

加载模型参数时,先创建模型实例,再使用 model.load_state_dict(torch.load('model.pth')) 加载。若加载整个模型,则直接 model = torch.load('whole_model.pth')。加载后,模型即可用于预测或继续训练。

九、可视化工具(TensorBoard)

安装与配置

TensorBoard 是一个强大的可视化工具,用于监控模型训练过程。使用 pip install tensorboard 安装,在 Pytorch 代码中引入相关模块:

from torch.utils.tensorboard import SummaryWriter

创建一个 SummaryWriter 实例,指定日志目录,如 writer = SummaryWriter('logs')。

可视化训练过程

在训练过程中,可以使用 writer.add_scalar() 记录损失、准确率等指标随 epoch 的变化:

for epoch in range(10):# 训练代码...writer.add_scalar('Loss', running_loss / len(dataloader), epoch)writer.add_scalar('Accuracy', accuracy, epoch)writer.close()

运行 tensorboard --logdir=logs 命令后,在浏览器中打开相应地址,即可查看可视化图表,直观了解模型训练动态。


http://www.ppmy.cn/server/157837.html

相关文章

分布式Id方案选择

分布式 ID 方案选择 在当今分布式系统日益盛行的背景下,分布式 ID 生成方案的选择成为了众多开发者关注的焦点。一个优秀的分布式 ID 方案,不仅能够确保生成的 ID 全局唯一,避免数据冲突,还能在高并发、大规模的分布式环境中保持…

【JAVA面试】自动装箱和自动拆箱

自动装箱(Autoboxing)和拆箱(Unboxing)详解 自动装箱(Autoboxing)和拆箱(Unboxing)是 Java 语言中非常有用的特性,它们自动处理基本数据类型与包装类之间的转换。自动装…

win10解决ping不通的问题

有时候 ping 一台目标机器为 win10 的时候,会出现 ping 不通的情况 因为 win10 默认没有开启 ICMP 回显,这个问题遇到好多次了,记录一下 在 “设置” 中选择 “更新和安全” 选择左侧的 “windows安全中心”,点击 “防火墙和网络…

hive迁移后修复分区慢,怎么办?

我有1个30TB的分区表,客户给的带宽只有600MB,按照150%的耗时来算,大概要迁移17小时。 使用hive自带的修复分区命令(一般修复分区比迁移时间长一点),可能要花24小时。于是打算用前面黄大佬的牛B方案。 Hive增…

C#DateTime基本用法使用

见过不少人、经过不少事、也吃过不少苦,感悟世事无常、人心多变,靠着回忆将往事串珠成链,聊聊感情、谈谈发展,我慢慢写、你一点一点看...... 1.时间创建 // 使用默认构造函数创建对象 日期时间初事值为 0001-1-1 0:00:00 …

VUE3 一些常用的 npm 和 cnpm 命令,涵盖了修改源、清理缓存、修改 SSL 协议设置等内容。

以下是一些常用的 npm 和 cnpm 命令,涵盖了修改源、清理缓存、修改 SSL 协议设置等内容。 npm 常用命令 1. 修改 npm 源 更改为淘宝的 npm 镜像源(可以提高安装速度): bash复制代码 npm config set registry https://registry…

k8s里面etcd的作用

etcd 是 Kubernetes 集群中一个至关重要的组件,它是一个开源的分布式键值存储系统,主要用于存储和管理 Kubernetes 集群的配置和状态信息。以下是 etcd 在 Kubernetes 中的具体作用和功能: ### 1. **集群状态存储** etcd 是 Kubernetes 集群的持久化存储后端,负责存储和管…

Python AI教程之十六:监督学习之决策树(7)和其它算法的比较

ML | 逻辑回归与决策树分类 逻辑回归和决策树分类是目前最流行和最基本的两种分类算法。没有哪种算法比另一种更好,而一种算法的优越性通常归功于所处理数据的性质。 我们可以在不同类别上比较这两种算法—— 标准 逻辑回归 决策树分类 可解释性 难以解释 更易于解释 决策…