不同音频振幅dBFS计算方法

server/2025/1/11 13:13:26/

1. 振幅的基本概念

振幅是描述音频信号强度的一个重要参数。它通常表示为信号的幅度值,幅度越大,声音听起来就越响。为了更好地理解和处理音频信号,通常会将振幅转换为分贝(dB)单位。分贝是一个对数单位,能够更好地反映人耳对声音强度变化的感知。

2. 振幅计算方法

2.1 总 RMS(Total RMS)

总 RMS 是一种常用的振幅计算方法,表示整个音频信号的平均能量。其计算公式为:
RMS = 20 ⋅ log ⁡ 10 ( 1 N ∑ i = 1 N x i 2 + 1.0 × 1 0 − 9 ) \text{RMS} = 20 \cdot \log_{10}(\sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} + 1.0 \times 10^{-9}) RMS=20log10(N1i=1Nxi2 +1.0×109)

其中, x i x_i xi是音频信号的样本值, N N N 是样本总数。总 RMS 提供了音频信号的整体响度感知。

2.2 最大 RMS(Max RMS)

最大 RMS 是通过将音频信号分成多个窗口,计算每个窗口的 RMS 值,并返回这些值中的最大值。其计算公式为:
Max RMS = max ⁡ ( 20 ⋅ log ⁡ 10 ( 1 N ∑ i = 1 N x i 2 + 1.0 × 1 0 − 9 ) ) \text{Max RMS} = \max \left( 20 \cdot \log_{10} \left( \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} + 1.0 \times 10^{-9} \right) \right) Max RMS=max 20log10 N1i=1Nxi2 +1.0×109

其中:

  • x i x_i xi 是窗口内的音频样本值。
  • N N N是窗口内样本的总数。

2.3 最小 RMS(Min RMS)

最小 RMS 与最大 RMS 类似,但它返回的是每个窗口中计算出的最小 RMS 值。其计算公式为:
Min RMS = min ⁡ ( 20 ⋅ log ⁡ 10 ( 1 N ∑ i = 1 N x i 2 + 1.0 × 1 0 − 9 ) ) \text{Min RMS} = \min \left( 20 \cdot \log_{10} \left( \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} + 1.0 \times 10^{-9} \right) \right) Min RMS=min 20log10 N1i=1Nxi2 +1.0×109

其中:

  • x i x_i xi 是窗口内的音频样本值。
  • N N N 是窗口内样本的总数。

2.4 平均 RMS(Avg RMS)

平均 RMS 是所有窗口 RMS 值的平均值,提供了音频信号的整体响度水平。其计算公式为:
Avg RMS = 1 M ∑ j = 1 M ( 20 ⋅ log ⁡ 10 ( 1 N ∑ i = 1 N x i j 2 + 1.0 × 1 0 − 9 ) ) \text{Avg RMS} = \frac{1}{M} \sum_{j=1}^{M} \left( 20 \cdot \log_{10} \left( \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_{ij}^2} + 1.0 \times 10^{-9} \right) \right) Avg RMS=M1j=1M 20log10 N1i=1Nxij2 +1.0×109

其中:

  • x i j x_{ij} xij 是第 j j j 个窗口内的音频样本值。
  • N N N 是每个窗口内样本的总数。
  • M M M 是窗口的总数。

2.5 峰值幅度(Peak Amplitude)

峰值幅度是音频信号中最大绝对值的幅度,通常用于表示信号的瞬时强度。其计算公式为:
Peak = 20 ⋅ log ⁡ 10 ( max ⁡ ( ∣ x ∣ ) + 1.0 × 1 0 − 9 ) \text{Peak} = 20 \cdot \log_{10}(\max(|x|) + 1.0 \times 10^{-9}) Peak=20log10(max(x)+1.0×109)

峰值幅度能够快速反映音频信号的瞬时响度,但不一定能准确表示人耳的感知。

3. 听觉结果的一致性

人耳对声音的感知是非线性的,通常对响度变化的感知与实际的物理振幅变化不成正比。使用 RMS 和分贝单位进行计算,可以更好地模拟人耳的感知特性。以下是不同计算方法与听觉结果的一致性分析:

  • 总 RMS:提供了整体响度的良好估计,通常与听觉感知一致。
  • 最大 RMS:能够捕捉到音频信号中的最强响度部分,适合用于动态范围分析。
  • 最小 RMS:有助于识别音频信号中的弱响度部分,适合用于音频修复和增强。
  • 平均 RMS:提供了稳定的响度水平,适合用于音频混音和母带处理。
  • 峰值幅度:虽然能够快速反映瞬时响度,但由于其瞬时特性,可能与人耳的感知不完全一致。

4. 程序实现

import os
import numpy as np
import librosa
def calculate_total_rms_dbfs(audio_data):rms_level = 20 * np.log10(np.sqrt(np.mean(audio_data ** 2)) + 1.0e-9)  # 计算总 RMS 并转换为 dBFSreturn rms_level
def calculate_max_rms_dbfs(audio_data, window_size):rms_values = []for start in range(0, len(audio_data), window_size):end = min(start + window_size, len(audio_data))window = audio_data[start:end]if len(window) > 0:rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)rms_values.append(rms)return np.max(rms_values) if rms_values else -np.inf  # 返回 -inf 如果没有 RMS 值
def calculate_min_rms_dbfs(audio_data, window_size):rms_values = []for start in range(0, len(audio_data), window_size):end = min(start + window_size, len(audio_data))window = audio_data[start:end]if len(window) > 0:rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)rms_values.append(rms)return np.min(rms_values) if rms_values else -np.inf  # 返回 -inf 如果没有 RMS 值
def calculate_avg_rms_dbfs(audio_data, window_size):rms_values = []for start in range(0, len(audio_data), window_size):end = min(start + window_size, len(audio_data))window = audio_data[start:end]if len(window) > 0:rms = 20 * np.log10(np.sqrt(np.mean(window ** 2)) + 1.0e-9)rms_values.append(rms)return np.mean(rms_values) if rms_values else -np.inf  # 返回 -inf 如果没有 RMS 值
def calculate_peak_amplitude(audio_data):return 20 * np.log10(np.max(np.abs(audio_data)) + 1.0e-9)
def analyze_audio_file(audio_path, window_duration=0.05):audio_data, sr = librosa.load(audio_path, sr=None)window_size = int(window_duration * sr)total_rms_dbfs = calculate_total_rms_dbfs(audio_data)max_rms_dbfs = calculate_max_rms_dbfs(audio_data, window_size)min_rms_dbfs = calculate_min_rms_dbfs(audio_data, window_size)avg_rms_dbfs = calculate_avg_rms_dbfs(audio_data, window_size)peak_amplitude = calculate_peak_amplitude(audio_data)print(f"File: {audio_path}")print(f"Total RMS (dBFS): {total_rms_dbfs:.2f}")print(f"Max RMS (dBFS): {max_rms_dbfs:.2f}")print(f"Min RMS (dBFS): {min_rms_dbfs:.2f}")print(f"Avg RMS (dBFS): {avg_rms_dbfs:.2f}")print(f"Peak Amplitude(dBFS): {peak_amplitude:.2f}")
if __name__ == "__main__":audio_path = '/Volumes/T9/DATA/构建数据集/SELE/real_echo/0011217_echo.wav'analyze_audio_file(audio_path)

在这里插入图片描述

在这里插入图片描述计算结果与Audition一致。


http://www.ppmy.cn/server/157474.html

相关文章

【时时三省】(C语言基础)常见的动态内存错误3

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 对同一块动态内存多次释放 示例: 解决方法就是释放完把p等于空指针就好了 动态开辟的空间忘记释放 示例: 只有p能找到这块空间 只有p知道这块动态开辟的空间起始地…

STM32 : 奈奎斯特-香农采样定理

在 MPU6050 角度计算过程中,采样率(Sampling Rate)需要大于等于两倍的带宽(Bandwidth),这一要求源自奈奎斯特-香农采样定理(Nyquist-Shannon Sampling Theorem)。该定理指出&#xf…

uniapp实现商品图片管理

先上效果图(实现商品的图片管理) (修改前) (修改后) 图片管理移动app常见需求,今天主要演示如何快速实现.这里还是基于 《星云erp-移动版》演示版 &…

Web渗透测试之XSS跨站脚本 原理 出现的原因 出现的位置 测试的方法 危害 防御手段 面试题 一篇文章给你说的明明白白

目录 XSS介绍的原理和说明 Cross Site Scripting 钓鱼 XSS攻击原理 XSS漏洞出现的原因: XSS产生的原因分析 XSS出现位置: XSS测试方法 XSS的危害 防御手段: 其它防御 面试题: 备注: XSS介绍的原理和说明 嵌入在客户…

jenkins入门10--自动化构建

build periodically:设定类似cron周期性时间触发构建 * * * * * (五颗星,中间用空格隔开) 第一颗表示分钟,取值0~59 第二颗表示小时,取值0~23 第三颗表示一个月的第几天,取值1~31 第四颗表示第几月&#xf…

jmeter使用说明

一、新建一个测试计划 二、右键测试计划,添加线程组 三、配置线程组 0、配置请求前预处理程序 可以进行参数加签加密等操作。(有需求请求参数需要加密加签等操作的可以配置,无需求的可以不配置) 添加BeanShell预处理程序 ${__P(…

分布式事务介绍 Seata架构与原理+部署TC服务 示例:黑马商城

1. 什么是分布式事务? 在分布式系统中,如果一个业务需要多个服务合作完成,而且每一个服务都有事务,多个事务必须同时成功或失败,这样的事务就是分布式事务。其中的每个服务的事务就是一个分支事务。整个业务称为全局事务。 打个比…

内核模块里访问struct rq及获取rq_clock_task时间的方法

一、背景 在之前的 CFS及RT调度整体介绍_cfs任务和rt任务-CSDN博客 博客里,我们讲到了内核调度里的一个很重要的概念rq,即运行队列run queue。我们知道,每个cpu上都有一个struct rq的结构体,管理着per-cpu的运行队列的情况&#…