【黑马头条】day20—xxl-job

server/2024/12/29 10:41:35/

目录

1 今日内容

1.1 需求分析

1.2 实现思路

1.3 定时计算

1.4 定时任务框架-xxljob

1.5 学习目录

2.分布式任务调度

2.1 什么是分布式任务调度

2.2 xxl-Job简介

2.3 XXL-Job-环境搭建

2.4 配置部署调度中心-docker安装

2.5 xxl-job入门案例编写

2.6 任务详解-执行器

2.7 任务详解-基础配置

2.8 路由策略(轮询)-案例

2.9 路由策略(分片广播)

1 今日内容

1.1 需求分析

目前实现的思路:从数据库直接按照发布时间倒序查询

  • 问题1:

    如何访问量较大,直接查询数据库,压力较大

  • 问题2:

    新发布的文章会展示在前面,并不是热点文章

1.2 实现思路

把热点数据存入redis进行展示

判断文章是否是热点,有几项标准: 点赞数量,评论数量,阅读数量,收藏数量

计算文章热度,有两种方案:

  • 定时计算文章热度

  • 实时计算文章热度

1.3 定时计算

  • 根据文章的行为(点赞、评论、阅读、收藏)计算文章的分值,利用定时任务每天完成一次计算

  • 把分值较大的文章数据存入到redis

  • App端用户查询文章列表的时候,优先从redis中查询热度较高的文章数据

1.4 定时任务框架-xxljob

spring传统的定时任务@Scheduled,但是这样存在这一些问题 :

  • 做集群任务的重复执行问题

  • cron表达式定义在代码之中,修改不方便

  • 定时任务失败了,无法重试也没有统计

  • 如果任务量过大,不能有效的分片执行

解决这些问题的方案为:

xxl-job 分布式任务调度框架

1.5 学习目录

  • xxl-job概述

  • xxl-job入门案例

  • xxl-job高级部分

  • 热点文章定时计算

  • 查询文章接口改造

2.分布式任务调度

2.1 什么是分布式任务调度

当前软件的架构已经开始向分布式架构转变,将单体结构拆分为若干服务,服务之间通过网络交互来完成业务处理。在分布式架构下,一个服务往往会部署多个实例来运行我们的业务,如果在这种分布式系统环境下运行任务调度,我们称之为分布式任务调度

将任务调度程序分布式构建,这样就可以具有分布式系统的特点,并且提高任务的调度处理能力:

1、并行任务调度

并行任务调度实现靠多线程,如果有大量任务需要调度,此时光靠多线程就会有瓶颈了,因为一台计算机CPU的处理能力是有限的。

如果将任务调度程序分布式部署,每个结点还可以部署为集群,这样就可以让多台计算机共同去完成任务调度,我们可以将任务分割为若干个分片,由不同的实例并行执行,来提高任务调度的处理效率。

2、高可用

若某一个实例宕机,不影响其他实例来执行任务。

3、弹性扩容

当集群中增加实例就可以提高并执行任务的处理效率。

4、任务管理与监测

对系统中存在的所有定时任务进行统一的管理及监测。让开发人员及运维人员能够时刻了解任务执行情况,从而做出快速的应急处理响应。

分布式任务调度面临的问题:

当任务调度以集群方式部署,同一个任务调度可能会执行多次,例如:电商系统定期发放优惠券,就可能重复发放优惠券,对公司造成损失,信用卡还款提醒就会重复执行多次,给用户造成烦恼,所以我们需要控制相同的任务在多个运行实例上只执行一次。常见解决方案:

  • 分布式锁,多个实例在任务执行前首先需要获取锁,如果获取失败那么就证明有其他服务已经在运行,如果获取成功那么证明没有服务在运行定时任务,那么就可以执行。

  • ZooKeeper选举,利用ZooKeeper对Leader实例执行定时任务,执行定时任务的时候判断自己是否是Leader,如果不是则不执行,如果是则执行业务逻辑,这样也能达到目的。

2.2 xxl-Job简介

针对分布式任务调度的需求,市场上出现了很多的产品:

1) TBSchedule:淘宝推出的一款非常优秀的高性能分布式调度框架,目前被应用于阿里、京东、支付宝、国美等很多互联网企业的流程调度系统中。但是已经多年未更新,文档缺失严重,缺少维护。

2) XXL-Job:大众点评的分布式任务调度平台,是一个轻量级分布式任务调度平台, 其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。

3)Elastic-job:当当网借鉴TBSchedule并基于quartz 二次开发的弹性分布式任务调度系统,功能丰富强大,采用zookeeper实现分布式协调,具有任务高可用以及分片功能。

4)Saturn: 唯品会开源的一个分布式任务调度平台,基于Elastic-job,可以全域统一配置,统一监 控,具有任务高可用以及分片功能。

XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。

源码地址:xxl-job: 一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。

文档地址:分布式任务调度平台XXL-JOB

特性

  • 简单灵活 提供Web页面对任务进行管理,管理系统支持用户管理、权限控制; 支持容器部署; 支持通过通用HTTP提供跨平台任务调度;

  • 丰富的任务管理功能 支持页面对任务CRUD操作; 支持在页面编写脚本任务、命令行任务、Java代码任务并执行; 支持任务级联编排,父任务执行结束后触发子任务执行; 支持设置指定任务执行节点路由策略,包括轮询、随机、广播、故障转移、忙碌转移等; 支持Cron方式、任务依赖、调度中心API接口方式触发任务执行

  • 高性能 任务调度流程全异步化设计实现,如异步调度、异步运行、异步回调等,有效对密集调度进行流量削峰;

  • 高可用 任务调度中心、任务执行节点均 集群部署,支持动态扩展、故障转移 支持任务配置路由故障转移策略,执行器节点不可用是自动转移到其他节点执行 支持任务超时控制、失败重试配置 支持任务处理阻塞策略:调度当任务执行节点忙碌时来不及执行任务的处理策略,包括:串行、抛弃、覆盖策略

  • 易于监控运维 支持设置任务失败邮件告警,预留接口支持短信、钉钉告警; 支持实时查看任务执行运行数据统计图表、任务进度监控数据、任务完整执行日志;

2.3 XXL-Job-环境搭建

2.3.1 调度中心环境要求

  • Maven3+

  • Jdk1.8+

  • Mysql5.7+

2.3.2 源码仓库地址

源码仓库地址Release Download
https://github.com/xuxueli/xxl-jobDownload
xxl-job: 一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。Download

也可以使用资料文件夹中的源码

2.3.3 初始化“调度数据库

请下载项目源码并解压,获取 “调度数据库初始化SQL脚本” 并执行即可。

位置:/xxl-job/doc/db/tables_xxl_job.sql 共8张表

- xxl_job_lock:任务调度锁表;
- xxl_job_group:执行器信息表,维护任务执行器信息;
- xxl_job_info:调度扩展信息表: 用于保存XXL-JOB调度任务的扩展信息,如任务分组、任务名、机器地址、执行器、执行入参和报警邮件等等;
- xxl_job_log:调度日志表: 用于保存XXL-JOB任务调度的历史信息,如调度结果、执行结果、调度入参、调度机器和执行器等等;
- xxl_job_logglue:任务GLUE日志:用于保存GLUE更新历史,用于支持GLUE的版本回溯功能;
- xxl_job_registry:执行器注册表,维护在线的执行器和调度中心机器地址信息;
- xxl_job_user:系统用户表;

调度中心支持集群部署,集群情况下各节点务必连接同一个mysql实例;

如果mysql做主从,调度中心集群节点务必强制走主库;

2.3.4 编译源码

解压源码,按照maven格式将源码导入IDE, 使用maven进行编译即可,源码结构如下:

2.3.5 配置部署“调度中心”

调度中心项目:xxl-job-admin

作用:统一管理任务调度平台上调度任务,负责触发调度执行,并且提供任务管理平台。

步骤一:调度中心配置

调度中心配置文件地址:/xxl-job/xxl-job-admin/src/main/resources/application.properties

数据库的连接信息修改为自己的数据库

### web
server.port=8888
server.servlet.context-path=/xxl-job-admin
​
### actuator
management.server.servlet.context-path=/actuator
management.health.mail.enabled=false
​
### resources
spring.mvc.servlet.load-on-startup=0
spring.mvc.static-path-pattern=/static/**
spring.resources.static-locations=classpath:/static/
​
### freemarker
spring.freemarker.templateLoaderPath=classpath:/templates/
spring.freemarker.suffix=.ftl
spring.freemarker.charset=UTF-8
spring.freemarker.request-context-attribute=request
spring.freemarker.settings.number_format=0.##########
​
### mybatis
mybatis.mapper-locations=classpath:/mybatis-mapper/*Mapper.xml
#mybatis.type-aliases-package=com.xxl.job.admin.core.model
​
### xxl-job, datasource
spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl_job?Unicode=true&serverTimezone=Asia/Shanghai&characterEncoding=UTF-8
spring.datasource.username=root
spring.datasource.password=root
spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver
​
### datasource-pool
spring.datasource.type=com.zaxxer.hikari.HikariDataSource
spring.datasource.hikari.minimum-idle=10
spring.datasource.hikari.maximum-pool-size=30
spring.datasource.hikari.auto-commit=true
spring.datasource.hikari.idle-timeout=30000
spring.datasource.hikari.pool-name=HikariCP
spring.datasource.hikari.max-lifetime=900000
spring.datasource.hikari.connection-timeout=10000
spring.datasource.hikari.connection-test-query=SELECT 1
​
### xxl-job, email
spring.mail.host=smtp.qq.com
spring.mail.port=25
spring.mail.username=xxx@qq.com
spring.mail.password=xxx
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true
spring.mail.properties.mail.smtp.starttls.required=true
spring.mail.properties.mail.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory
​
### xxl-job, access token
xxl.job.accessToken=
​
### xxl-job, i18n (default is zh_CN, and you can choose "zh_CN", "zh_TC" and "en")
xxl.job.i18n=zh_CN
​
## xxl-job, triggerpool max size
xxl.job.triggerpool.fast.max=200
xxl.job.triggerpool.slow.max=100
​
### xxl-job, log retention days
xxl.job.logretentiondays=30

启动调度中心,默认登录账号 “admin/123456”, 登录后运行界面如下图所示。

2.4 配置部署调度中心-docker安装

1.创建mysql容器,初始化xxl-job的SQL脚本

docker run -p 3306:3306 --name mysql57 \
-v /opt/mysql/conf:/etc/mysql \
-v /opt/mysql/logs:/var/log/mysql \
-v /opt/mysql/data:/var/lib/mysql \
-e MYSQL_ROOT_PASSWORD=root \
-d mysql:5.7

2.拉取镜像

docker pull xuxueli/xxl-job-admin:2.3.0

3.创建容器

docker run -e PARAMS="--spring.datasource.url=jdbc:mysql://192.168.200.130:3306/xxl_job?Unicode=true&characterEncoding=UTF-8 \
--spring.datasource.username=root \
--spring.datasource.password=root" \
-p 8888:8080 -v /tmp:/data/applogs \
--name xxl-job-admin --restart=always  -d xuxueli/xxl-job-admin:2.3.0

2.5 xxl-job入门案例编写

2.5.1 登录调度中心,点击下图所示“新建任务”按钮,新建示例任务

2.5.2 创建xxljob-demo项目,导入依赖

<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency>
​<!--xxl-job--><dependency><groupId>com.xuxueli</groupId><artifactId>xxl-job-core</artifactId><version>2.3.0</version></dependency>
</dependencies>

2.5.3 application.yml配置

server:port: 8881
​
​
xxl:job:admin:addresses: http://192.168.200.130:8888/xxl-job-adminexecutor:appname: xxl-job-executor-sampleport: 9999
​

2.5.4 新建配置类

package com.heima.xxljob.config;
​
import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
​
/*** xxl-job config** @author xuxueli 2017-04-28*/
@Configuration
public class XxlJobConfig {private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);
​@Value("${xxl.job.admin.addresses}")private String adminAddresses;
​@Value("${xxl.job.executor.appname}")private String appname;
​@Value("${xxl.job.executor.port}")private int port;
​
​@Beanpublic XxlJobSpringExecutor xxlJobExecutor() {logger.info(">>>>>>>>>>> xxl-job config init.");XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();xxlJobSpringExecutor.setAdminAddresses(adminAddresses);xxlJobSpringExecutor.setAppname(appname);xxlJobSpringExecutor.setPort(port);return xxlJobSpringExecutor;}
​
​
}

2.5.4 任务代码,重要注解:@XxlJob(“JobHandler”)

package com.heima.xxljob.job;
​
import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.stereotype.Component;
​
@Component
public class HelloJob {
​
​@XxlJob("demoJobHandler")public void helloJob(){System.out.println("简单任务执行了。。。。");
​}
}

2.5.5 测试-单节点

  • 启动微服务

  • 在xxl-job的调度中心中启动任务

2.6 任务详解-执行器

  • 执行器:任务的绑定的执行器,任务触发调度时将会自动发现注册成功的执行器, 实现任务自动发现功能;

  • 另一方面也可以方便的进行任务分组。每个任务必须绑定一个执行器

以下是执行器的属性说明:

属性名称说明
AppName是每个执行器集群的唯一标示AppName, 执行器会周期性以AppName为对象进行自动注册。可通过该配置自动发现注册成功的执行器, 供任务调度时使用;
名称执行器的名称, 因为AppName限制字母数字等组成,可读性不强, 名称为了提高执行器的可读性;
排序执行器的排序, 系统中需要执行器的地方,如任务新增, 将会按照该排序读取可用的执行器列表;
注册方式调度中心获取执行器地址的方式;
机器地址注册方式为"手动录入"时有效,支持人工维护执行器的地址信息;

自动注册和手动注册的区别和配置

2.7 任务详解-基础配置

基础配置

  • 执行器:每个任务必须绑定一个执行器, 方便给任务进行分组

  • 任务描述:任务的描述信息,便于任务管理;

  • 负责人:任务的负责人;

  • 报警邮件:任务调度失败时邮件通知的邮箱地址,支持配置多邮箱地址,配置多个邮箱地址时用逗号分隔

调度配置

  • 调度类型:

    • 无:该类型不会主动触发调度;

    • CRON:该类型将会通过CRON,触发任务调度;

    • 固定速度:该类型将会以固定速度,触发任务调度;按照固定的间隔时间,周期性触发;

任务配置

  • 运行模式:

BEAN模式:任务以JobHandler方式维护在执行器端;需要结合 "JobHandler" 属性匹配执行器中任务;

  • JobHandler:运行模式为 "BEAN模式" 时生效,对应执行器中新开发的JobHandler类“@JobHandler”注解自定义的value值;

  • 执行参数:任务执行所需的参数;

阻塞处理策略

阻塞处理策略:调度过于密集执行器来不及处理时的处理策略;

  • 单机串行(默认):调度请求进入单机执行器后,调度请求进入FIFO(First Input First Output)队列并以串行方式运行;

  • 丢弃后续调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,本次请求将会被丢弃并标记为失败;

  • 覆盖之前调度:调度请求进入单机执行器后,发现执行器存在运行的调度任务,将会终止运行中的调度任务并清空队列,然后运行本地调度任务;

路由策略

当执行器集群部署时,提供丰富的路由策略,包括;

  • FIRST(第一个):固定选择第一个机器;

  • LAST(最后一个):固定选择最后一个机器;

  • ROUND(轮询)

  • RANDOM(随机):随机选择在线的机器;

  • CONSISTENT_HASH(一致性HASH):每个任务按照Hash算法固定选择某一台机器,且所有任务均匀散列在不同机器上。

  • LEAST_FREQUENTLY_USED(最不经常使用):使用频率最低的机器优先被选举;

  • LEAST_RECENTLY_USED(最近最久未使用):最久未使用的机器优先被选举;

  • FAILOVER(故障转移):按照顺序依次进行心跳检测,第一个心跳检测成功的机器选定为目标执行器并发起调度;

  • BUSYOVER(忙碌转移):按照顺序依次进行空闲检测,第一个空闲检测成功的机器选定为目标执行器并发起调度;

  • SHARDING_BROADCAST(分片广播):广播触发对应集群中所有机器执行一次任务,同时系统自动传递分片参数;可根据分片参数开发分片任务;

2.8 路由策略(轮询)-案例

1.修改任务为轮询

2.启动多个微服务

修改yml配置文件

server:port: ${port:8881}
​
​
xxl:job:admin:addresses: http://192.168.200.130:8888/xxl-job-adminexecutor:appname: xxl-job-executor-sampleport: ${executor.port:9999}

3.启动多个微服务

每个微服务轮询的去执行任务

2.9 路由策略(分片广播)

2.9.1 分片逻辑

执行器集群部署时,任务路由策略选择”分片广播”情况下,一次任务调度将会广播触发对应集群中所有执行器执行一次任务

执行器集群部署时,任务路由策略选择”分片广播”情况下,一次任务调度将会广播触发对应集群中所有执行器执行一次任务

2.9.2 路由策略(分片广播)-案例

需求:让两个节点同时执行10000个任务,每个节点分别执行5000个任务

①:创建分片执行器

②:创建任务,路由策略为分片广播

③:分片广播代码

分片参数

index:当前分片序号(从0开始),执行器集群列表中当前执行器的序号;

total:总分片数,执行器集群的总机器数量;

修改yml配置

server:port: ${port:8881}
​
​
xxl:job:admin:addresses: http://192.168.200.130:8888/xxl-job-adminexecutor:appname: xxl-job-sharding-executorport: ${executor.port:9999}

代码

package com.heima.xxljob.job;
​
import com.xxl.job.core.context.XxlJobHelper;
import com.xxl.job.core.handler.annotation.XxlJob;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;
​
import java.util.ArrayList;
import java.util.List;
​
@Component
public class HelloJob {
​@Value("${server.port}")private String port;
​
​@XxlJob("demoJobHandler")public void helloJob(){System.out.println("简单任务执行了。。。。"+port);
​}
​@XxlJob("shardingJobHandler")public void shardingJobHandler(){//分片的参数int shardIndex = XxlJobHelper.getShardIndex();int shardTotal = XxlJobHelper.getShardTotal();
​//业务逻辑List<Integer> list = getList();for (Integer integer : list) {if(integer % shardTotal == shardIndex){System.out.println("当前第"+shardIndex+"分片执行了,任务项为:"+integer);}}}
​public List<Integer> getList(){List<Integer> list = new ArrayList<>();for (int i = 0; i < 10000; i++) {list.add(i);}return list;}
}

④:测试

启动多个微服务测试,一次执行可以执行多个任务


http://www.ppmy.cn/server/154175.html

相关文章

单提示分割所有医学图像

本文介绍了一种新的医学图像分割方法-单点分割。单提示分割结合了单次和交互式方法的优点。在推理阶段&#xff0c;只需一个提示样本&#xff0c;它就可以在一次向前传递中熟练地处理看不见的任务。github.com/KidsWithTokens/one-prompt

nvm node.js 版本管理工具

nvm 介绍 nvm 全称 Node Version Manager 顾名思义它是用来管理 node 版本的工具&#xff0c;方便切换不同版本的Node.js 使用 nvm 的使用非常的简单&#xff0c;跟 npm 的使用方法类似 下载安装 首先先下载 nvm&#xff0c;下载地址 https://github.com/coreybutler/nvm…

Rust 在前端基建中的使用

摘要 随着前端技术的不断发展&#xff0c;前端基础设施&#xff08;前端基建&#xff09;的建设已成为提升开发效率、保障产品质量的关键环节。然而&#xff0c;在应对复杂业务场景与高性能需求时&#xff0c;传统的前端技术栈逐渐暴露出诸多不足。近年来&#xff0c;Rust语言…

微信流量主挑战:用户破16!新增文档转换(新纪元3)

朋友们&#xff0c;报告好消息&#xff01;我的小程序用户数量已经涨到16个了&#xff01;没错&#xff0c;真没拉朋友圈亲戚好友来撑场子&#xff0c;全靠实力&#xff08;和一点点运气&#xff09;吸引了16位陌生小伙伴光临&#xff01;这波进步&#xff0c;连我自己都感动了…

数据可视化-16. 日历图

目录 1. 日历图的概念 2. 日历图的适用场景 2.1 事件或活动的频率分析 2.2 数据的时间周期性分析 2.3 异常值检测 2.4 绩效监控 3. 日历图的缺陷 3.1 粒度受限于天数 3.2 数据密度过高时候难以解读 3.3 难以比较多个数据集 3.4 周期性较长的数据不易展示 4. 日历图…

【elementplus】中文模式

设置中文 <el-date-picker v-model“userAddKey” type“daterange” style“width: 240px” start-placeholder“Start Date” end-placeholder“End Date” change“handleUserAddChange” /> 引入&#xff1a; import zhCn from “element-plus/es/locale/lang/zh-cn”…

WPF 绘制过顶点的圆滑曲线(样条,贝塞尔)

项目中要用到样条曲线&#xff0c;必须过顶点&#xff0c;圆滑后还不能太走样&#xff0c;捣鼓一番&#xff0c;发现里面颇有玄机&#xff0c;于是把我多方抄来改造的方法发出来&#xff0c;方便新手&#xff1a; 如上图&#xff0c;看代码吧&#xff1a; -------------------…

3.基于 Temporal 的 Couchbase 动态 SQL 执行场景

在使用 Temporal 和 Go 语言 调用 Couchbase 执行 SQL 脚本时&#xff0c;可以通过动态参数传递到 SQL 脚本中&#xff0c;以下是完整实现的指南&#xff1a; 1. Temporal Workflow 的参数传递 Temporal 的 Workflow 支持接收动态参数&#xff0c;将这些参数传递给执行 SQL 的…