嵌入式硬件杂谈(七)IGBT MOS管 三极管应用场景与区别

server/2024/12/28 20:24:03/

引言:在现代嵌入式硬件设计中,开关元件作为电路中的重要组成部分,起着至关重要的作用。三种主要的开关元件——IGBT(绝缘栅双极型晶体管)、MOSFET(金属氧化物半导体场效应晶体管)和三极管(BJT)各自具有不同的特点和适用场景。在嵌入式系统、电动汽车、工业自动化、逆变器、电源管理等领域,它们都扮演着不可或缺的角色。本篇文章将深入探讨这三种开关元件的应用场景、技术特点、面临的问题及它们之间的主要区别,帮助读者更好地理解这些元件的选择和应用。

目录

1.开关电路介绍

2.MOS管的问题

3.三极管的问题

4.IGBT的问题

5. 三者的主要区别

1.开关电路介绍

需要知道IGBT MOS管 三极管应用场景与区别,我们先了解下述的内容,首先就是开关电路,左图的开关是在一直开关不停切换的状态,那么电压的波形就是右边的一个PWM波形,比如电动汽车,他内部的模型就是一个电池加上一个电机,当然中间也需要一个电机调速器,因此这个电机调速器也是通过类似于开关来作用的。

因此你想开的快些,开关闭合时间就长些,否则闭合时间就短些。

其实变频空调的原理也是一样的,通过变频器,也就是开关电路的原理了。

2.MOS管的问题

你给他的gate施加高电平的时候,mos管的DS之间就等效为一个闭合的开关,那么反之给gate施加一个低电平的时候,mos管的DS之间就等效为一个断开的开关的状态。因为在高压的情况下,mos管的耐受能力不行,400V就到头了,很容易烧坏。

MOSFET是一种场效应晶体管,具有高输入阻抗和非常快的开关速度,广泛用于低功率、开关频率较高的应用。

应用场景:

低功率开关电源(SMPS):MOSFET广泛用于开关电源中,特别是在较低电压下,如5V至100V的应用。

电动汽车充电器:在电动汽车充电器中,MOSFET用于高频开关,提供高效率的电压转换。

DC-DC转换器:MOSFET在DC-DC转换器中用作开关元件,能够实现高效的能量转换。

音频放大器:在音频放大器中,MOSFET用于高频率开关,能够提高音频信号的功率输出。

优点:

高速开关,适合高频应用。

开关损耗低,效率高。

结构简单,易于控制。

缺点:

电压承受能力相对较低,一般在200V以下,部分高压MOSFET可承受更高电压。

在大电流应用中可能出现较大的导通电阻,导致较高的导通损耗。

3.三极管的问题

如果考虑到三极管你还需要注意的是如何产生一个驱动的电流呢?用单片机肯定是不行的,他的IO口输出不了太高的电流,最多20mA,那是不是可以用mos管相加呢?

但是这样的电路是有问题的,需要额外的电源还有电阻,因此改成如下的状态会更好。

但是其实这样的电路结构就是IGBT了。

三极管是一种较早的半导体器件,它的工作原理基于电流控制,适用于高功率放大应用,但在开关性能上不如MOSFET和IGBT。

应用场景:

音频放大器:三极管常用于音频放大器中,能够提供高增益和线性放大。

模拟电路:在一些低频模拟电路中,三极管依然作为主要的增益元件使用。

低功率开关电路:虽然三极管的开关速度较慢,但在某些低功率、低频应用中仍然被使用。

优点:

高增益和较低的饱和压降。

在低频电路中具有良好的放大特性。

缺点:

开关速度较慢,不适合高频应用。

输入阻抗低,控制复杂。

热稳定性差,易产生热失控。

4.IGBT的问题

IGBT(Insulated Gate Bipolar Transistor)介绍

IGBT(绝缘栅双极型晶体管)是一种混合型半导体开关器件,结合了MOSFET(金属氧化物半导体场效应晶体管)和BJT(双极性结型晶体管)两者的优点。它将MOSFET的高输入阻抗和BJT的高电流承载能力结合起来,广泛应用于高功率和中高电压的电子控制系统中。

IGBT的基本结构与工作原理

IGBT的结构类似于一个MOSFETBJT的组合,通常包括四层半导体材料(P-N-P-N结构),包括一个栅极、源极和漏极。它的工作原理基于以下几个步骤:

  1. 栅极控制:输入电压通过栅极控制IGBT的开关状态。当栅极电压达到一定阈值时,IGBT被开启(导通状态),反之,关闭(断开状态)。

  2. 载流子注入:当栅极电压足够高时,电子(或孔)通过源极注入到基极区,进而通过PNPN结构的作用进行载流子注入,产生集电极电流。类似于BJT的工作机制,IGBT在导通时可以通过基极区进行大电流流动。

  3. 关断机制:当栅极电压降低到阈值以下时,IGBT关断,电流无法流过集电极与发射极之间,形成断开状态。

与BJT不同,IGBT的栅极由MOS结构控制,因此其输入特性类似MOSFET,具有很高的输入阻抗,不需要持续的控制电流。这使得它比BJT更容易驱动。

GBT结合了MOSFET的输入特性和BJT的输出特性,因此它在高电压和大电流应用中表现出色。

应用场景:

电动汽车:在电动汽车的电机驱动系统中,IGBT被广泛应用于电机调速器(例如逆变器)中。电动汽车的电机调速器通过开关频率调节电机的工作电流,实现精确控制。

变频器(VFD):IGBT是工业用变频器中的核心开关元件,控制电机的速度和转矩,常用于空调、泵和风机等设备的驱动系统。

电力逆变器:IGBT在光伏逆变器和风力发电系统中广泛使用,用于将直流电转换为交流电。

电力电子转换器:在高功率电源和电力传输系统(如高压直流输电)中,IGBT用于开关控制,能够承受较高的电压和电流,适应高功率需求。

优点:

能够承受较高的电压(通常为600V至4500V)。

在较高电流下依然能保持较低的导通损耗。

开关速度适中,适合高功率控制。

缺点:

开关速度相对较慢,不适合高频应用。

导通损耗相对较大。

5. 三者的主要区别

特性IGBTMOSFET三极管
控制方式电压控制(类似MOSFET)电压控制电流控制
承受电压高(600V~4500V)中等(30V~1500V)低(一般<100V)
承受电流高(几十安培到几百安培)低至中等中等
开关速度中等高(适用于高频)
导通损耗较大较小较小
效率较高(高功率应用)高(高频应用)一般
适用场景高功率、高电流的电力电子应用(电动汽车、电力逆变器等)高频开关应用(电源、电动工具、电动汽车充电器等)音频放大器、低频放大应用

IGBT 主要用于高功率、高电流的应用场合,适合电动汽车电机控制、逆变器等高功率控制系统。

MOSFET 适用于高频、高效率的开关电路,如开关电源、DC-DC转换器、电动汽车充电器等。

三极管 在低频模拟电路、音频放大器等领域仍有广泛应用,但在高频或高功率开关应用中逐渐被替代。


http://www.ppmy.cn/server/154014.html

相关文章

MetaRename for Mac,适用于 Mac 的文件批量重命名工具

在处理大量文件时&#xff0c;为每个文件手动重命名既耗时又容易出错。对于摄影师、设计师、开发人员等需要频繁处理和整理文件的专业人士来说&#xff0c;找到一款能够简化这一过程的工具是至关重要的。MetaRename for Mac 就是这样一款旨在提高工作效率的应用程序&#xff0c…

WebP Vs. PNG:哪种图像格式适合您的网站?

图像对任何网站都至关重要,可以增强视觉吸引力和用户体验。但是,图像也会显着影响网站的加载时间,因此必须针对 Web 使用对其进行优化。一种方法是使用正确的图像格式。

【MFC】多工具栏如何保存状态(续)

之前我写过一篇&#xff1a; 【MFC】多工具栏如何保存状态 其中的方法有点无奈&#xff0c;经过我最新的研究&#xff0c;有了更好的方法。现在分享给大家。 系统中保存状态是通过&#xff1a; pToolBar->LoadState(strSection);来实现 我原来的方法是绕过&#xff0c;现在考…

go下载依赖提示连接失败

1、现象 Go下载模块提示连接失败 dial tcp 142.251.42.241:443: connectex: A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond.…

Large Language Model based Multi-Agents: A Survey of Progress and Challenges

一、摘要 背景&#xff1a; 大型语言模型&#xff08;LLMs&#xff09;在多种任务中取得了显著的成功&#xff0c;展现出与人类相媲美的规划和推理能力。LLMs被用作自主智能体&#xff0c;自动执行任务&#xff0c;尤其在基于单个LLM的规划或决策智能体的基础上&#xff0c;基于…

Educational Codeforces Round 173 (Rated for Div. 2) - Codeforces

Educational Codeforces Round 173 (Rated for Div. 2) - Codeforces Problem - A - Codeforces 签到题目 Problem - B - Codeforces 数学 被小学奥数薄纱力… 给出一个由 n ! n! n!个 d d d组成的整数&#xff0c;看他能否被十以内的奇数整除 1 1 1肯定是答案 一个数能…

论文解读 | EMNLP2024 一种用于大语言模型版本更新的学习率路径切换训练范式

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; 点击 阅读原文 观看作者讲解回放&#xff01; 作者简介 王志豪&#xff0c;厦门大学博士生 刘诗雨&#xff0c;厦门大学硕士生 内容简介 新数据的不断涌现使版本更新成为大型语言模型&#xff08;LLMs&#xff…

大数据 深度学习毕设课题帮助

文章目录 &#x1f6a9; 1 前言1.1 选题注意事项1.1.1 难度怎么把控&#xff1f;1.1.2 题目名称怎么取&#xff1f; 1.2 开题选题推荐1.2.1 起因1.2.2 核心- 如何避坑(重中之重)1.2.3 怎么办呢&#xff1f; &#x1f6a9;2 选题概览&#x1f6a9; 3 项目概览题目1 : 大数据电商…