文章目录
- 前言
- 一、数据集制作
- 二、模型训练
- 2.1 划分训练集验证集:
- 2.2 配置yaml文件:
- 2.3 训练
前言
旋转框目标检测(Rotated bounding box object detection)是计算机视觉领域的一项技术,它用于检测图像中具有任意方向的目标。与传统的水平矩形框目标检测相比,旋转框目标检测能够更准确地描述物体的形状和位置,尤其是对于那些长宽比差异较大或者方向各异的物体,如遥感图像中的建筑物、文本行、车辆等,本文将详细介绍YOLOV11-OBB自定义数据集训练测试流程,帮您实现旋转框目标检测。
一、数据集制作
本次标注软件采用的是X-AnyLabeling,github地址:windows直接下载。
点击X-AnyLabeling-CPU.exe下载,下载好之后打开,界面如下所示:
使用方法如下所示:
标注好数据集之后标签是json格式,运行下面的代码将数据集转化为yolov11所需要的txt格式:
def order_points(points):# 1. 计算中心点center_x = sum([p[0] for p in points]) / 4center_y = sum([p[1] for p in points]) / 4# 2. 计算每个点相对于中心点的角度,并排序def angle_from_center(point):return math.atan2(point[1] - center_y, point[0] - center_x)# 按角度逆时针排序points = sorted(points, key=angle_from_center, reverse=True)# 3. 按"右上、右下、左下、左上"的顺序排列ordered_points = [points[0], points[1], points[2], points[3]]return ordered_pointsimport math, os, json# 定义类别映射字典,键为类别名称,值为类别索引
category_mapping = {"box_top": 0}def order_points(points):# 计算四个顶点的中心点坐标center_x = sum([p[0] for p in points]) / 4center_y = sum([p[1] for p in points]) / 4# 计算每个点相对于中心点的角度,按逆时针方向排序,确保点的顺序一致points = sorted(points, key=lambda p: math.atan2(p[1] - center_y, p[0] - center_x), reverse=True)# 返回按顺序排列的四个点,顺序为“右上、右下、左下、左上”return [points[0], points[1], points[2], points[3]]def convert_json_to_yolo11(json_folder, output_folder, category_mapping):os.makedirs(output_folder, exist_ok=True) # 确保输出文件夹存在,如果不存在则创建for filename in os.listdir(json_folder): # 遍历JSON文件夹中的每个文件if filename.endswith('.json'): # 只处理.json结尾的文件json_path = os.path.join(json_folder, filename)try:with open(json_path, 'r') as f:data = json.load(f) # 读取JSON文件内容except (FileNotFoundError, json.JSONDecodeError) as e:print(f"文件读取错误或格式无效:{filename},错误信息:{e}") # 如果读取出错,输出错误信息并跳过continue# 获取图像的宽度和高度image_width = data.get("imageWidth")image_height = data.get("imageHeight")if not image_width or not image_height: # 如果图像尺寸信息缺失,输出警告并跳过该文件print(f"图像尺寸信息缺失:{filename}")continueyolo_lines = [] # 初始化YOLO格式的标注行for shape in data.get("shapes", []): # 遍历JSON中的每个标注对象label = shape.get("label") # 获取标注的类别名称if label in category_mapping: # 检查类别名称是否在类别映射字典中class_index = category_mapping[label] # 获取对应的类别索引else:print(f"未识别的类别标签:{label},跳过该标注") # 如果类别标签未定义,输出警告并跳过该标注continuepoints = shape.get("points") # 获取标注的四个顶点坐标if len(points) == 4: # 确保标注包含四个顶点,符合OBB要求ordered_points = order_points(points) # 使用order_points函数对顶点进行顺序排列# 将顶点坐标归一化到0-1之间,并保留六位有效数字normalized_points = [[round(x / image_width, 6), round(y / image_height, 6)] for x, y inordered_points]# 构造YOLO格式的标注行,包含类别索引和四个归一化顶点坐标yolo_line = [class_index] + [coord for point in normalized_points for coord in point]yolo_lines.append(" ".join(map(str, yolo_line))) # 将标注行添加到YOLO行列表中if yolo_lines: # 如果存在标注数据,则写入到对应的TXT文件中txt_filename = os.path.splitext(filename)[0] + ".txt" # 生成输出TXT文件名output_path = os.path.join(output_folder, txt_filename)with open(output_path, 'w') as out_file:out_file.write("\n".join(yolo_lines)) # 将所有标注行写入TXT文件print(f"转换完成: {output_path}") # 输出转换完成信息# 使用示例
json_folder = "/home/build/yhgt/json" # JSON文件夹路径,需要修改
output_folder = "/home/build/yhgt/txt" # 输出TXT文件夹路径,需要修改
convert_json_to_yolo11(json_folder, output_folder, category_mapping)
二、模型训练
2.1 划分训练集验证集:
2.2 配置yaml文件:
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
# Example usage: python train.py --data VOC.yaml
# parent
# ├── yolov5
# └── datasets
# └── VOC ← downloads here# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
#path: ../VOCdevkit_wpeson_Tanker_01-20/VOC2007/ImageSets/Main
train: /home/build/yhgt/images/train/ # train images (relative to 'path') 16551 imagesval: /home/build/yhgt/images/val/# train images (relative to 'path') 16551 images
#val: # val images (relative to 'path') 4952 images
# - val.txt
#test: # test images (optional)
# - test.txt# Classes
nc: 1 # number of classes
names: ['box_top'] # class names# Download script/URL (optional) ---------------------------------------------------------------------------------------
2.3 训练
from ultralytics import YOLO# Load a model
model = YOLO("/home/build/下载/ultralytics-main (1)/yolo11n-obb.pt") # load a pretrained model (recommended for training)# Train the model with 2 GPUs
results = model.train(data="/home/build/yhgt/cc.yaml", epochs=200, imgsz=640, device="0,1")