bain.js(十二):RNN神经网络实战教程 - 音乐乐谱生成 -人人都是作曲家~

server/2024/12/16 3:14:59/

系列文章:

  • (一):可以在浏览器运行的、默认GPU加速的神经网络库概要介绍
  • (二):项目集成方式详解
  • (三):手把手教你配置和训练神经网络
  • (四):利用异步训练和交叉验证来优化和加速神经网络训练,提升神经网络性能
  • (五):不同的神经网络类型和对比,构建神经网络时该如何选型?
  • (六):构建FNN神经网络实战教程 - 用户喜好预测
  • (七):Autoencoder实战教程 -及自编码器的使用场景
  • (八):RNNTimeStep 实战教程 - 股票价格预测
  • (九):LSTMTimeStep 实战教程 - 未来短期内的股市指数预测
  • (十):GRUTimeStep 实战教程 - 股市指数预测以及与 LSTMTimeStep 对比
  • ((十一):基于多变量时间序列的股票数据预测实战-以成交量、换手率和价格波动率为例

在本篇教程中,我们将一起探索如何使用 brain.js 实现一个简单的 音乐乐谱生成系统。我们将通过构建一个 RNN(循环神经网络)模型,训练它学习现有的乐谱数据,并利用模型生成新的音乐片段。brain.js 是一个轻量级且强大的 JavaScript 神经网络库,能够在浏览器中直接运行,适合快速实现神经网络任务。通过这个教程,你不仅能了解如何构建 RNN 模型,还能掌握其在序列数据(如音乐)生成中的应用。

1. 什么是RNN?

循环神经网络(Recurrent Neural Network,RNN) 是一种适合处理序列数据的神经网络。与传统的前馈神经网络(Feedforward Neural Network)不同,RNN 通过在网络中引入循环连接,使得它能够利用前一个时间步的信息来影响当前时间步的输出,从而处理具有时序依赖的数据。

RNN 的强大之处在于它能够捕捉时间或空间上有顺序关系的模式,广泛应用于自然语言处理、语音识别、时间序列预测等领域。对于我们本例中的音乐生成任务,RNN 可以帮助模型学习音符之间的依赖关系,从而生成新的乐谱。

2. 环境和数据准备

2.1 环境准备

首先,我们需要在浏览器中加载 brain.js 库。由于 brain.js 支持 JavaScript 前端开发,无需额外的服务器配置。只需要在 HTML 文件中引入该库即可:

<script src="https://cdn.jsdelivr.net/npm/brain.js@2.0.0-beta.8/dist/brain-browser.min.js"></script>
2.2 数据准备

为了训练 RNN,我们需要一组音乐数据。在本例中,我们将使用简化的乐谱数据。每个乐谱片段由音符和其对应的持续时间组成,我们将这些数据表示为字符序列(例如,C4 D4 E4 F4 G4 A4 B4 C5)。为了简化,我们将构建一个简单的训练数据集,作为 RNN 模型的输入。

示例数据集

const trainingData = ["C4 D4 E4 F4 G4 A4 B4 C5","D4 E4 F4 G4 A4 B4 C5 D5","E4 F4 G4 A4 B4 C5 D5 E5","F4 G4 A4 B4 C5 D5 E5 F5","G4 A4 B4 C5 D5 E5 F5 G5"
];

这些数据可以进一步扩展,也可以用真实的 MIDI 文件来训练模型。但为了示范,我们先使用这种简化的数据集。

3. 模型构建和训练

3.1 构建 RNN 模型

接下来,我们使用 brain.jsRecurrentNetwork 来构建 RNN 模型。我们将音符序列转换为适合训练的数据格式,训练模型学习这些音符的时序依赖关系。

const net = new brain.recurrent.RNN();// 将音符数据转换为训练数据
const trainingSet = trainingData.map(item => ({input: item.split(" ").join(", "),  // 用逗号分隔音符output: item.split(" ").join(", ")  // 输出也是相同的音符序列
}));// 训练模型
net.train(trainingSet, {iterations: 1000,  // 训练次数log: true,         // 是否打印训练过程中的日志logPeriod: 100,    // 每100次训练输出一次日志errorThresh: 0.005 // 训练误差阈值,误差小于该值时停止训练
});

在这里,我们使用的 train 函数有几个关键参数:

  • iterations:训练的迭代次数,通常迭代次数越多,模型的学习效果越好。
  • log:是否打印训练过程中的信息,便于观察训练进度。
  • logPeriod:设置日志输出频率。
  • errorThresh:设定误差阈值,当模型误差低于该值时,训练会停止。
3.2 模型训练

在训练过程中,RNN 会通过多个迭代,学习音符之间的规律。每一次迭代都在调整模型的权重,使其更好地预测音符序列。随着训练的进行,模型将逐渐能生成更自然的音乐片段。

4. 模型应用

训练完成后,我们可以使用训练好的模型来生成新的音乐乐谱。通过给定一个初始的音符序列,RNN 会根据已经学到的规律生成后续的音符。

// 输入一个初始音符序列来生成新的乐谱
const initialInput = "C4";
const generatedMusic = net.run(initialInput);// 输出生成的乐谱
console.log("生成的音乐乐谱: " + generatedMusic);

在这个例子中,我们输入一个初始音符 C4,然后模型根据训练数据生成一个新的音符序列。每次生成的乐谱会有所不同,因为模型的生成是基于概率的。

5. 完整代码示例

以下是一个完整的 HTML + JavaScript 示例,其中包含了 RNN 的构建、训练和生成音乐乐谱的全部代码:

<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>RNN 音乐乐谱生成</title><script src="https://cdn.jsdelivr.net/npm/brain.js@2.0.0-beta.8/dist/brain-browser.min.js"></script>
</head>
<body><h1>音乐乐谱生成器</h1><script>javascript">const net = new brain.recurrent.RNN();// 训练数据const trainingData = ["C4 D4 E4 F4 G4 A4 B4 C5","D4 E4 F4 G4 A4 B4 C5 D5","E4 F4 G4 A4 B4 C5 D5 E5","F4 G4 A4 B4 C5 D5 E5 F5","G4 A4 B4 C5 D5 E5 F5 G5"];const trainingSet = trainingData.map(item => ({input: item.split(" ").join(", "),  // 用逗号分隔音符output: item.split(" ").join(", ")  // 输出也是相同的音符序列}));// 训练模型net.train(trainingSet, {iterations: 1000,log: true,logPeriod: 100,errorThresh: 0.005});// 输入一个初始音符生成音乐const initialInput = "C4";const generatedMusic = net.run(initialInput);console.log("生成的音乐乐谱: " + generatedMusic);</script>
</body>
</html>

6. 实践建议与总结

6.1 实践建议
  • 数据集扩展:本例中的数据集较为简单,实际应用中可以使用更多样化的数据集,例如从 MIDI 文件中提取的乐谱数据,或者更复杂的音符序列。
  • 调整超参数:RNN 的训练效果受超参数的影响较大,如训练次数、学习率等。在实际应用中,可以通过不断调整这些参数来提高模型的性能。
  • 生成长度:对于短序列的输入,生成的乐谱可能较为简单。通过输入更长的音符序列,模型可以生成更复杂、更有创意的乐谱。
6.2 总结

通过使用 brain.js 来实现一个简单的 RNN 模型,我们成功地展示了如何生成音乐乐谱。尽管我们使用了简化的音符数据集,生成的乐谱已展示出一定的规律性。随着数据集的扩展和训练参数的调整,我们可以获得更加复杂和富有创意的音乐片段。

RNN 在处理时序数据上的强大能力,使其在艺术创作中,尤其是音乐生成方面,具有巨大的潜力。未来,随着更复杂模型的应用和更多数据的训练,我们可以实现风格化的音乐创作,甚至生成完全原创的乐曲。


http://www.ppmy.cn/server/150514.html

相关文章

YOLOv11融合[CVPR2024]Starnet中的star block特征提取模块

YOLOv11v10v8使用教程&#xff1a; YOLOv11入门到入土使用教程 YOLOv11改进汇总贴&#xff1a;YOLOv11及自研模型更新汇总 《Rewrite the Stars》 一、 模块介绍 论文链接&#xff1a;https://arxiv.org/abs/2403.19967 代码链接&#xff1a;https://github.com/ma-xu/Rewri…

(七)机器学习 - 散点图

散点图&#xff08;Scatter Plot&#xff09;是一种用于展示两个变量之间关系的图表类型。它通过在二维平面上绘制点来表示数据的分布情况&#xff0c;每个点的横坐标&#xff08;x轴&#xff09;和纵坐标&#xff08;y轴&#xff09;分别对应数据集中的两个变量的值。散点图的…

ansible自动化运维(一)简介及清单,模块

相关文章ansible自动化运维&#xff08;二&#xff09;playbook模式详解-CSDN博客ansible自动化运维&#xff08;三&#xff09;jinja2模板&&roles角色管理-CSDN博客ansible自动化运维&#xff08;四&#xff09;运维实战-CSDN博客 ansible自动化运维工具 1.什么是自…

汽车保养系统+ssm

摘 要 由于APP软件在开发以及运营上面所需成本较高&#xff0c;而用户手机需要安装各种APP软件&#xff0c;因此占用用户过多的手机存储空间&#xff0c;导致用户手机运行缓慢&#xff0c;体验度比较差&#xff0c;进而导致用户会卸载非必要的APP&#xff0c;倒逼管理者必须改…

故障013:易忘的NULL表达式

故障013&#xff1a;易忘的NULL表达式 一、问题引入二、探索之路2.1 数据准备2.2 回顾NULL表达式2.3 重现问题2.3.1 分析原因2.3.2 如何化解预期&#xff1f; 三、知识总结 一、问题引入 某单位开发人员理直气壮抛出一张截图&#xff0c;以红色醒目地标记问题&#xff0c;好似…

Redis02 SpringBoot整合Redis

使用方式 1.创建boot项目引入Web(Spring Web)NoSQl(Spring Data Redis(AccessDriver)) 2.修改配置文件 spring:redis:host: 127.0.0.1port: 6379password: 123456lettuce:pool:max-active: 8 #最大连接max-idle: 8 #最大空闲连接min-idle: 0 #最小空闲连接max-wait: 1000ms #…

vscode免密ssh登录ubantu 配置ubantu静态ip

1.vscode免密ssh登录ubantu 1、windows创建秘钥&#xff0c; 有秘钥就不用创建 ssh-keygen -t rsa2、将id_rsa.pub文件内的内容追加到ubantu的authorized_keys即可 2.配置ubantu静态ip 之前ubantu一直用的是动态ip&#xff0c;ubantu的ip变一次我就要从新配置一次ssh十分…

Python 程序与 Java 系统集成:通过 FastAPI 实现 HTTP 接口

要将你的 Python 程序封装为一个 API 服务&#xff0c;使得前后端 Java 系统能够通过 HTTP 调用&#xff0c;你可以使用 FastAPI 框架来实现。这是一个现代的、快速的 Web 框架&#xff0c;特别适合用于构建 APIs。FastAPI 支持自动生成 OpenAPI 文档&#xff0c;且性能非常高&…