基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 多图推理

server/2024/12/14 6:53:43/

基于Qwen2-VL模型针对LaTeX OCR任务进行微调训练 - 多图推理

flyfish

基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_LoRA配置如何写
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_单图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_原模型_单图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_原模型_多图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_多图推理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_数据处理
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_训练
基于Qwen2-VL模型针对LaTeX_OCR任务进行微调训练_-_训练过程
输入两张图像

请添加图片描述
请添加图片描述
输出
请添加图片描述
可视化
Image 1:
E m m ˉ = 2 7 Q c π 1 / 2 Γ ( 1 / 4 ) 2 log ⁡ ( L 0 / L ) L ∫ 1 ∞ d y y 2 y 4 − 1 . E _ { m \bar { m } } = \frac { 2 ^ { 7 } \sqrt { Q _ { c } } \pi ^ { 1 / 2 } } { \Gamma ( 1 / 4 ) ^ { 2 } } \frac { \log \left( L _ { 0 } / L \right) } { L } \int _ { 1 } ^ { \infty } d y \frac { y ^ { 2 } } { \sqrt { y ^ { 4 } - 1 } } . Emmˉ=Γ(1/4)227Qc π1/2Llog(L0/L)1dyy41 y2.

Image 2:
u ( τ ) ‾ = u ( − τ ˉ ) , u ( τ + 1 ) = − u ( τ ) , \overline { { u ( \tau ) } } = u ( - \bar { \tau } ) , \qquad \qquad u ( \tau + 1 ) = - u ( \tau ) , u(τ)=u(τˉ),u(τ+1)=u(τ),

import argparse
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
from peft import PeftModel, LoraConfig, TaskType
import torchclass LaTeXOCR:def __init__(self, local_model_path, lora_model_path):self.local_model_path = local_model_pathself.lora_model_path = lora_model_pathself._load_model_and_processor()def _load_model_and_processor(self):config = LoraConfig(task_type=TaskType.CAUSAL_LM,target_modules=["q_proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj",],inference_mode=True,r=64,lora_alpha=16,lora_dropout=0.05,bias="none",)self.model = Qwen2VLForConditionalGeneration.from_pretrained(self.local_model_path, torch_dtype=torch.float16, device_map="auto")self.model = PeftModel.from_pretrained(self.model, self.lora_model_path, config=config)self.processor = AutoProcessor.from_pretrained(self.local_model_path)def generate_latex_from_images(self, test_image_paths, prompt):"""根据给定的测试图像路径列表和提示信息,生成对应的LaTeX格式文本。参数:test_image_paths (list of str): 包含数学公式的测试图像路径列表。prompt (str): 提供给模型的提示信息。返回:list of str: 转换后的LaTeX格式文本列表。"""results = []for image_path in test_image_paths:messages = [{"role": "user","content": [{"type": "image","image": image_path,"resized_height": 100,"resized_width": 500,},{"type": "text", "text": prompt},],}]text = self.processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)image_inputs, video_inputs = process_vision_info(messages)inputs = self.processor(text=[text],images=image_inputs,videos=video_inputs,padding=True,return_tensors="pt",)inputs = inputs.to("cuda" if torch.cuda.is_available() else "cpu")with torch.no_grad():generated_ids = self.model.generate(**inputs, max_new_tokens=8192)generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]output_text = self.processor.batch_decode(generated_ids_trimmed,skip_special_tokens=True,clean_up_tokenization_spaces=False,)results.append(output_text[0])return resultsdef parse_arguments():parser = argparse.ArgumentParser(description="LaTeX OCR using Qwen2-VL")parser.add_argument("--local_model_path",type=str,default="./Qwen/Qwen2-VL-7B-Instruct",help='Path to the local model.',)parser.add_argument("--lora_model_path",type=str,default="./output/Qwen2-VL-7B-LatexOCR/checkpoint-1500",help='Path to the LoRA model checkpoint.',)parser.add_argument("--test_image_paths",nargs='+',  # 接受多个参数type=str,default=["./LaTeX_OCR/987.jpg", "./LaTeX_OCR/986.jpg"],  # 设置默认值为两个图像路径help='Paths to the test images.',)return parser.parse_args()if __name__ == "__main__":args = parse_arguments()prompt = ("尊敬的Qwen2VL大模型,我需要你帮助我将一张包含数学公式的图片转换成LaTeX格式的文本。\n""请按照以下说明进行操作:\n""1. **图像中的内容**: 图像中包含的是一个或多个数学公式,请确保准确地识别并转换为LaTeX代码。\n""2. **公式识别**: 请专注于识别和转换数学符号、希腊字母、积分、求和、分数、指数等数学元素。\n""3. **LaTeX语法**: 输出时使用标准的LaTeX语法。确保所有的命令都是正确的,并且可以被LaTeX编译器正确解析。\n""4. **结构保持**: 如果图像中的公式有特定的结构(例如多行公式、矩阵、方程组),请在输出的LaTeX代码中保留这些结构。\n""5. **上下文无关**: 不要尝试解释公式的含义或者添加额外的信息,只需严格按照图像内容转换。\n""6. **格式化**: 如果可能的话,使输出的LaTeX代码易于阅读,比如适当添加空格和换行。")latex_ocr = LaTeXOCR(args.local_model_path, args.lora_model_path)results = latex_ocr.generate_latex_from_images(args.test_image_paths, prompt)for i, result in enumerate(results):print(f"Image {i + 1}:")print(result)print("-" * 80)

http://www.ppmy.cn/server/150027.html

相关文章

webform自动提交的情况

webform按回车自动提交的情况 当页面只有一个textbox控件的时候, <asp:TextBox runat"server" ID"strStandardName" />当页面有button按钮的时候 <asp:Button ID"Button1" runat"server" Text"Button" OnClick&q…

使用秘钥登录服务器

在我们测试或生产环境中&#xff0c;为了服务器安全性&#xff0c;有时可能需要以 SSH 密钥的方式登录服务器&#xff0c;接下来&#xff0c;将演示如何通过 SSH 私钥的方式来远程服务器。 一、远程服务器生成密钥对 1、首先在目标远程服务器下生成 SSH 密钥对 ssh-keygen然…

Linux下禁止root远程登录访问

开始讲故事 Long long ago&#xff0c; Linux远程访问方式有telnet、ssh两种协议&#xff1b;有人可能还会说vnc和rdp协议方式&#xff0c;后面这两种主要是可视化桌面场景下的&#xff0c;并非主流。 时过境迁&#xff0c;telnet因安全性低逐渐被禁用淘汰&#xff0c;最后就…

python数据分析之爬虫基础:requests详解

1、requests基本使用 1.1、requests介绍 requests是python中一个常用于发送HTTP请求的第三方库&#xff0c;它极大地简化了web服务交互的过程。它是唯一的一个非转基因的python HTTP库&#xff0c;人类可以安全享用。 1.2、requests库的安装 pip install -i https://pypi.tu…

大数据常用的算法--常用的分类算法

概述 分类算法是根据数据特征来预测数据的类别。 分类算法是一种监督学习&#xff08;Supervised Learning&#xff09;方法&#xff0c;它需要一个已知的类别标签的训练数据集&#xff0c;通过学习这个数据集来预测新的数据点的类别。例如&#xff0c;在电子邮件过滤系统中&am…

(软件测试文档大全)测试计划,测试报告,测试方案,压力测试报告,性能测试,等保测评,安全扫描测试,日常运维检查测试,功能测试等全下载

1. 引言 1.1. 编写目的 1.2. 项目背景 1.3. 读者对象 1.4. 参考资料 1.5. 术语与缩略语 2. 测试策略 2.1. 测试完成标准 2.2. 测试类型 2.2.1. 功能测试 2.2.2. 性能测试 2.2.3. 安全性与访问控制测试 2.3. 测试工具 3. 测试技术 4. 测试资源 4.1. 人员安排 4.2. 测试环境 4.2.…

21 设计模式之中介者模式

一、什么是中介者模式 中介者模式属于行为型设计模式&#xff0c;它的核心思想是&#xff1a;将对象之间的交互交给一个中介者对象来处理&#xff0c;而不是让对象之间直接通信。这样做的好处是减少了类与类之间的耦合&#xff0c;使得系统更加松散&#xff0c;便于维护和扩展。…

新能源汽车安全充电管理方案

摘要:近年来&#xff0c;随着国家碳达峰和碳中和目标的提出&#xff0c;国家节能减排政策实施力度的进一步加大大众的环保意识、环保理念进一步深入人心&#xff0c;同时根据国家战略安全需要&#xff0c;新能源汽车行业异军突起&#xff0c;发展迅猛。随着新能源汽车数量的不断…