【大数据学习 | Spark】Spark on hive与 hive on Spark的区别

server/2024/12/2 20:49:43/

1. Spark on hive

Spark on hive指的是使用Hive的元数据(Metastore)和SQL解析器(HiveQL)。这种方式下,spark可以读取和写入hive表,利用hive的元数据信息来进行表结构的定义和管理。

具体特点为:

1.1 元数据共享

sparkSQL使用hive的Metastore来获取表的元数据信息,这样可以在SparkSQL直接访问hive表。

1.2 SQL兼容性

sparkSQL支持HiveQL的语法,使得用户可以使用熟悉的Hive查询语句在Spark上执行SQL查询。

1.3 性能优化

Spark可以利用强大的分布式计算能力来加速查询,尤其是在处理大规模数据集时。

2. Hive on Spark

hive on Spark指的是将hive的默认的执行引擎MR换成Spark。这种方式下,Hive查询会由Spark执行而不是MR执行,从而利用Spark强大的计算能力。

具体特点为:

2.1 执行引擎的切换

通过配置Hive使其使用Spark作为执行引擎,可以在不改变现有的Hive查询的情况下,显著提高查询性能。

2.2 配置设置

需要在Hive配置文件设置相关参数。

2.3 兼容性

大多数的Hive查询和UDF(用户自定义函数)都可以在Spark引擎上运行,但某些特定的功能可能需要额外的配置。

3. 主要区别

3.1 角色和职责

  • Spark on hive,Spark作为主要的计算框架,利用Hive的元数据和SQL解析器。
  • Hive on Spark,Hive作为主要的查询工具,使用Spark作为底层的执行引擎。

3.2 使用场景

  • Spark on hive,适用于已经使用Spark进行数据处理,但希望利用Hive的元数据管理和SQL解析语法的场景。
  • Hive on Spark,适用于已经适用SQL进行数据查询,但希望提高查询性能的场景。

3.3 发起点

  • Spark on hive,查询是从Spark应用程序发起的,使用SparkSQL或者DataFrame API。
  • Hive on Spark,查询是从Hive客户端发起,使用HiveQL。

3.4 元数据管理

  • Spark on hive,Spark通过Hive的MetaStore获取元数据。
  • Hive on Spark,Hive通过自己的MetaStore来获取元数据。

3.5 任务调度

  • Spark on hive,Spark直接生成执行计划并调度Spark任务。
  • Hive on Spark,Hive生成查询计划,然后将其转化为Spark任务并提交给Spark集群。


http://www.ppmy.cn/server/146834.html

相关文章

droppath

DropPath 是一种用于正则化深度学习模型的技术,它在训练过程中随机丢弃路径(或者说随机让某些部分的输出变为零),从而增强模型的鲁棒性和泛化能力。 代码解释: import torch import torch.nn as nn # 定义 DropPath…

[python脚本处理文件入门]-17.Python如何操作Excel文件的读写

哈喽,大家好,我是木头左! 在Python中,处理Excel文件最常用的库之一是xlrd,它用于读取Excel文件。而当需要创建或写入Excel文件时,xlwt库则是一个不错的选择。这两个库虽然功能强大,但使用起来也非常简单直观。 安装与导入 确保你已经安装了这两个库。如果没有安装,可以…

单点登录深入详解之技术方案总结

技术方案之CAS认证 概述 CAS 是耶鲁大学的开源项目,宗旨是为 web 应用系统提供一种可靠的单点登录解决方案。 CAS 从安全性角度来考虑设计,用户在 CAS 输入用户名和密码之后通过ticket进行认证,能够有效防止密码泄露。 CAS 广泛使用于传统应…

sql分类

SQL(Structured Query Language)是一种用于管理和操作关系数据库管理系统(RDBMS)的编程语言。SQL 可以分为几个主要类别,每个类别都有其特定的用途和功能。以下是 SQL 的主要分类: 1. 数据定义语言&#x…

map用于leetcode

//第一种map方法 function groupAnagrams(strs) {let map new Map()for (let str of strs) {let key str ? : str.split().sort().join()if (!map.has(key)) {map.set(key, [])}map.get(key).push(str)} //此时map为Map(3) {aet > [ eat, tea, ate ],ant > [ tan,…

【LeetCode: 3232. 判断是否可以赢得数字游戏 + 模拟】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

多线程安全单例模式的传统解决方案与现代方法

在多线程环境中实现安全的单例模式时,传统的双重检查锁(Double-Checked Locking)方案和新型的std::once_flag与std::call_once机制是两种常见的实现方法。它们在实现机制、安全性和性能上有所不同。 1. 传统的双重检查锁方案 双重检查锁&am…

数据结构 (16)特殊矩阵的压缩存储

前言 特殊矩阵的压缩存储是数据结构中的一个重要概念,它旨在通过找出特殊矩阵中值相同的矩阵元素的分布规律,把那些呈现规律性分布的、值相同的多个矩阵元素压缩存储到一个存储空间中,从而节省存储空间。 一、特殊矩阵的定义 特殊矩阵是指具有…