【C++】 list接口以及模拟实现

server/2024/12/2 13:10:19/

list介绍

list文档介绍

C++中的list是一个双向链表容器。它允许在任意位置进行快速插入和删除操作,并且能够在常量时间内访问任意元素,并且该容器可以前后双向迭代。

1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。

2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。

3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。

4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。

5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list 的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

list使用

以下为list中一些常见的重要接口。

list的构造

构造函数(constructor)接口说明
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list()构造空的list
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list
void listtest1()
{list<int> l1;                         // 构造空的l1list<int> l2(4, 100);                 // l2中放4个值为100的元素list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3list<int> l4(l3);                    // 用l3拷贝构造l4}

list迭代器

函数声明接口说明
begin+end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin+rend返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的 reverse_iterator,即begin位置

int main() 
{list<int> myList = { 1, 2, 3, 4, 5 };// 正向迭代器遍历listcout << "正向遍历list: ";list<int>::iterator itr;for (itr = myList.begin(); itr != myList.end(); ++itr) {cout << *itr << " ";}cout << endl;// 逆向迭代器遍历listcout << "逆向遍历list: ";list<int>::reverse_iterator ritr;for (ritr = myList.rbegin(); ritr != myList.rend(); ++ritr) {cout << *ritr << " ";}cout << endl;return 0;
}

注意

1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动     

2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

list 容量与访问

函数声明接口说明
empty检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

list修改操作

函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

// push_back/pop_back/push_front/pop_front
void TestList3()
{int array[] = { 1, 2, 3 };list<int> L(array, array + sizeof(array) / sizeof(array[0]));// 在list的尾部插入4,头部插入0L.push_back(4);L.push_front(0);PrintList(L);// 删除list尾部节点和头部节点L.pop_back();L.pop_front();PrintList(L);
}// insert /erase 
void TestList4()
{int array1[] = { 1, 2, 3 };list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));// 获取链表中第二个节点auto pos = ++L.begin();cout << *pos << endl;// 在pos前插入值为4的元素L.insert(pos, 4);PrintList(L);// 在pos前插入5个值为5的元素L.insert(pos, 5, 5);PrintList(L);// 在pos前插入[v.begin(), v.end)区间中的元素vector<int> v{ 7, 8, 9 };L.insert(pos, v.begin(), v.end());PrintList(L);// 删除pos位置上的元素L.erase(pos);PrintList(L);// 删除list中[begin, end)区间中的元素,即删除list中的所有元素L.erase(L.begin(), L.end());PrintList(L);
}// resize/swap/clear
void TestList5()
{// 用数组来构造listint array1[] = { 1, 2, 3 };list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));PrintList(l1);// 交换l1和l2中的元素list<int> l2;l1.swap(l2);PrintList(l1);PrintList(l2);// 将l2中的元素清空l2.clear();cout << l2.size() << endl;
}

list的迭代器失效

大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代 器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

void TestListIterator1()
{
     int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
     list<int> l(array, array+sizeof(array)/sizeof(array[0]));
 
     auto it = l.begin();
     while (it != l.end())
     {
         // erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给
        其赋值
         l.erase(it); 
         ++it;
     }
}

// 改正
void TestListIterator()
{
     int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
     list<int> l(array, array+sizeof(array)/sizeof(array[0]));
 
     auto it = l.begin();
     while (it != l.end())
     {
         l.erase(it++);     // it = l.erase(it);
     }
}

list模拟实现

#include <assert.h>
namespace xianyushasheng
{template<class T>struct list_node{list_node<T>* _next;list_node<T>* _prev;T _val;list_node(const T& val = T()):_next(nullptr), _prev(nullptr), _val(val){}};template<class T, class Ref, class Ptr>struct __list_iterator{typedef list_node<T> Node;typedef __list_iterator<T, Ref, Ptr> self;Node* _node;__list_iterator(Node* node):_node(node){}Ref operator*(){return _node->_val;}Ptr operator->(){return &_node->_val;}self& operator++(){_node = _node->_next;return *this;}self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}bool operator!=(const self& it) const{return _node != it._node;}bool operator==(const self& it) const{return _node == it._node;}};template<class T>class list{typedef list_node<T> Node;public:typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;iterator begin(){return iterator(_head->_next);}iterator end(){return _head;}const_iterator begin() const{return const_iterator(_head->_next);}const_iterator end() const{return _head;}void empty_init(){_head = new Node;_head->_prev = _head;_head->_next = _head;_size = 0;}list(){empty_init();}// lt2(lt1)list(const list<T>& lt){empty_init();for (auto& e : lt){push_back(e);}}void swap(list<T>& lt){std::swap(_head, lt._head);std::swap(_size, lt._size);}list<T>& operator=(list<T> lt){swap(lt);return *this;}~list(){clear();delete _head;_head = nullptr;}void clear(){iterator it = begin();while (it != end()){it = erase(it);}_size = 0;}void push_back(const T& x){insert(end(), x);}void push_front(const T& x){insert(begin(), x);}void pop_back(){erase(--end());}void pop_front(){erase(begin());}// pos位置之前插入iterator insert(iterator pos, const T& x){Node* cur = pos._node;Node* prev = cur->_prev;Node* newnode = new Node(x);prev->_next = newnode;newnode->_next = cur;cur->_prev = newnode;newnode->_prev = prev;++_size;return newnode;}iterator erase(iterator pos){assert(pos != end());Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;prev->_next = next;next->_prev = prev;delete cur;--_size;return next;}size_t size(){/*size_t sz = 0;iterator it = begin();while (it != end()){++sz;++it;}return sz;*/return _size;}private:Node* _head;size_t _size;};

list与vector的对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不 同,其主要不同如下:

vectorlist

底 层 结 构

动态顺序表,一段连续空间带头结点的双向循环链表
随 机 访 问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素 效率O(N)
插 入 和 删 除任意位置插入和删除效率低,需要搬移元素,时间复杂 度为O(N),插入时有可能需要增容,增容:开辟新空 间,拷贝元素,释放旧空间,导致效率更低任意位置插入和删除效率高,不 需要搬移元素,时间复杂度为 O(1)
空 间 利 用 率底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高底层节点动态开辟,小节点容易 造成内存碎片,空间利用率低, 缓存利用率低
迭 代 器原生态指针对原生态指针(节点指针)进行封装
迭 代 器 失 效在插入元素时,要给所有的迭代器重新赋值,因为插入 元素有可能会导致重新扩容,致使原来迭代器失效,删 除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效, 删除元素时,只会导致当前迭代 器失效,其他迭代器不受影响
使 用 场 景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随 机访问


http://www.ppmy.cn/server/146725.html

相关文章

arcgis for js FeatureLayer和GeoJSON一个矢量点同时渲染图形和文本

效果 FeatureLayer和GeoJSONLayer, 一个矢量点同时渲染图形和文本 代码 相关参数自行查阅文档, 这里就不做注释了 示例代码手动创建FeatureLayer方式, 如果是通过远程url加载图层的 渲染方式同理, GeoJSONLayer同理 <!DOCTYPE html> <html lang"zn"><…

[极客时间]AIGC产品经理训练营毕业总结

为期10周的训练营也进入尾声了,回想当初&#xff0c;真的是蛮感慨的。 我为什么会去参加AIGC产品训练营呢? 其实也是蛮奇妙的. 我是一名传统业务的前端研发, 因为一个项目第一次真实的接触到了AIGC,就感觉像是打开了新世界的大门,让我倍感兴奋,想要在ai的世界里探索一番. 不过…

数学建模选MATLAB还是Python?

在进行数学建模时&#xff0c;选择合适的编程语言和工具对于建模的效率和效果至关重要。目前&#xff0c;MATLAB和Python是两个常用的数学建模工具&#xff0c;它们各自有优缺点&#xff0c;适用于不同的场景。本文将从多个维度对MATLAB和Python进行比较&#xff0c;帮助大家做…

git的使用(简洁版)

什么是 Git&#xff1f; Git 是一个分布式版本控制系统 (DVCS)&#xff0c;用于跟踪文件的更改并协调多人之间的工作。它由 Linus Torvalds 在 2005 年创建&#xff0c;最初是为了管理 Linux 内核的开发。Git 的主要目标是提供高效、易用的版本控制工具&#xff0c;使得开发者…

用c语言完成俄罗斯方块小游戏

用c语言完成俄罗斯方块小游戏 这估计是你在编程学习过程中的第一个小游戏开发&#xff0c;怎么说呢&#xff0c;在这里只针对刚学程序设计的学生&#xff0c;就是说刚接触C语言没多久&#xff0c;有一点功底的学生看看&#xff0c;简陋的代码&#xff0c;简陋的实现&#xff0…

Milvus的索引类型

Milvus 是一个开源的向量数据库&#xff0c;专为高效存储、检索和管理大规模向量数据而设计。Milvus 提供了多种索引类型&#xff0c;用于加速向量搜索的性能&#xff0c;不同的索引类型适用于不同的数据特性、查询需求和硬件资源。下面是 Milvus 支持的主要索引类型的详细介绍…

React Router

概述 React Router 创建于 2014 年&#xff0c;是一个用于 React 的声明式、基于组件的客户端和服务端路由库&#xff0c;它可以保持 UI 与 URL 同步&#xff0c;拥有简单的 API 与强大的功能。 安装依赖 // npm npm install react-router-dom6// pnpm pnpm add react-route…

三菱汽车决定退出中国市场,发展重心转移至东南亚

在全球汽车行业日益激烈的竞争环境下&#xff0c;各大车企不断调整战略以适应市场需求的变化。近期&#xff0c;三菱汽车公司宣布将正式退出中国市场&#xff0c;并将发展重心转移至东南亚。 一、市场背景与三菱的现状 自21世纪初&#xff0c;伴随着中国市场的急速发展&#…