AIGC--AIGC与人机协作:新的创作模式

server/2024/11/27 5:54:40/

AIGC_0">AIGC与人机协作:新的创作模式

在这里插入图片描述

引言

人工智能生成内容(AIGC)正在以惊人的速度渗透到创作的各个领域。从生成文本、音乐、到图像和视频,AIGC使得创作过程变得更加快捷和高效。然而,AIGC并非完全取代了人类的创作角色,更多的是与人类协作形成一种新的创作模式。在这篇博客中,我们将探讨AIGC与人类如何在创作中紧密协作,并通过代码示例展示如何将这种协作应用到实际的创作场景中。

AIGC_7">AIGC与人机协作的意义

在传统的创作模式中,创作者需要从无到有地构思、创作和调整作品,整个过程费时费力。而AIGC通过利用机器学习模型帮助人类在特定的创作阶段提供灵感、辅助内容生成或者自动化地进行某些重复性任务,从而降低了创作的门槛,提高了效率。人类和AIGC之间的协作,可以最大化地融合机器的运算能力和人类的创造性思维。

应用场景

  1. 文本创作:通过AIGC模型生成草稿,人类创作者进行润色和编辑。
  2. 音乐创作:AI生成背景旋律,人类进行演奏或编曲。
  3. 图像创作:AI生成图像,人类艺术家进行后期调整和风格化处理。
  4. 视频创作:AI生成短视频剪辑,人类创作者对视频进行编辑,增强故事性。

AIGC_18">AIGC与人机协作的核心技术

在这里插入图片描述

AIGC与人机协作的核心技术包括生成对抗网络(GAN)、自然语言处理(NLP)、Transformer、强化学习等,这些技术使得AI在理解和生成内容方面取得了巨大的突破。下面我们将通过代码示例展示如何利用这些技术实现人机协作的具体应用。

1. 使用Transformer进行文本协作创作

Transformer架构的出现极大地提升了自然语言处理的效果,尤其是在文本生成和理解方面。以下是一个基于GPT-2模型与人类协作进行文本创作的示例,利用GPT-2生成文本内容,创作者可以进一步进行修改和扩展。

from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch# 加载GPT-2模型和分词器
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")# 输入起始文本,作为AI生成的基础
prompt = "In a world where artificial intelligence collaborates with humans,"
input_ids = tokenizer.encode(prompt, return_tensors='pt')# 使用GPT-2生成后续文本
output = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.7)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)print("Generated Text:\n", generated_text)# 人类创作者可以在此基础上进行润色和扩展

通过这个代码,我们可以让GPT-2为创作者提供灵感或者初步的草稿。人类创作者则可以基于生成的文本进一步加工润色,从而创作出更具风格和深度的内容。

2. 使用VQ-VAE-2生成图像并进行艺术加工

VQ-VAE-2是一种先进的自编码器模型,可以生成高分辨率的图像。在图像创作中,AI可以帮助生成初步的画面,人类艺术家则可以对这些画面进行进一步的艺术加工,使其符合个人的艺术风格。

以下是一个使用VQ-VAE-2生成图像的示例:

import torch
from torchvision.utils import save_image
from vqvae import VQVAE  # 假设已实现VQVAE模型# 加载预训练的VQ-VAE模型
model = VQVAE()
model.load_state_dict(torch.load("vqvae_pretrained.pth"))
model.eval()# 生成潜在向量并解码为图像
z = torch.randn(1, 256, 8, 8)  # 随机生成潜在向量
with torch.no_grad():generated_image = model.decode(z)# 保存生成的图像
save_image(generated_image, 'generated_image.png')
print("Image saved as 'generated_image.png'")# 人类艺术家可以基于这个图像进一步进行艺术化处理,如调整颜色、添加细节等

在这个例子中,AI生成了一个初步的图像,艺术家可以基于这个基础进行后续创作,进一步提高作品的表现力。

3. 使用MuseGAN进行音乐协作创作

MuseGAN是一种用于音乐生成的GAN模型,可以生成多轨音乐,适合人类和AI的协作。AI生成背景旋律和伴奏,人类音乐家则可以在这个基础上进行演奏或编曲。

以下是一个使用MuseGAN生成音乐片段的代码示例:

import numpy as np
import musegan# 初始化MuseGAN模型
model = musegan.MuseGAN()
model.load_weights('musegan_weights.h5')# 随机生成噪声向量
noise = np.random.normal(0, 1, (1, 100))# 生成音乐片段
music = model.generate(noise)# 保存生成的音乐为MIDI文件
musegan.save_midi(music, 'generated_music.mid')
print("Music saved as 'generated_music.mid'")# 人类音乐家可以使用MIDI编辑工具对音乐进行进一步编曲和优化

在这个例子中,MuseGAN为创作者生成了一段音乐片段,音乐家可以基于这个片段进行创作,从而大大提高音乐创作的效率。

人机协作的优势与挑战

优势

  1. 提高创作效率AIGC可以为创作者提供初步的创作内容,从而节省大量的时间和精力。
  2. 打破创意瓶颈:在创作遇到瓶颈时,AIGC可以提供灵感和新的视角,帮助创作者找到突破口。
  3. 降低创作门槛:对于没有专业技能的爱好者,AIGC提供了强有力的工具,降低了创作的技术门槛。

挑战

  1. 内容质量控制AIGC生成的内容质量不一,可能需要人类创作者进行大量的后期编辑。
  2. 缺乏个性化AIGC生成的内容往往缺乏独特的风格,需要人类创作者赋予其个性化特征。
  3. 道德与版权问题AIGC生成的内容可能涉及版权争议,特别是在使用已有作品进行训练的情况下。

AIGC_123">AIGC与人机协作的未来展望

  1. 深度融合:未来的AIGC工具将与人类的创作过程深度融合,实现真正的无缝协作。例如,通过语音指令引导AI生成指定风格的内容。
  2. 个性化创作:AI将能够更好地理解个人创作者的偏好和风格,生成符合个人需求的内容,减少后期编辑的工作量。
  3. 实时交互创作:在音乐、绘画和写作等领域,AI可以实现与人类的实时互动,提供即时反馈,从而让创作过程更加顺畅和富有乐趣。

结论

AIGC与人机协作正在重新定义创作的方式。通过利用AI的计算能力和生成能力,人类创作者可以将更多的时间和精力放在作品的构思和艺术表现上,而将重复性和耗时的工作交给AI处理。这种协作模式不仅提高了创作效率,还为创作者带来了新的灵感和创作机会。


http://www.ppmy.cn/server/145259.html

相关文章

高性能 ArkUI 应用开发:复杂 UI 场景中的内存管理与 XML 优化

本文旨在深入探讨华为鸿蒙HarmonyOS Next系统(截止目前API12)的技术细节,基于实际开发实践进行总结。 主要作为技术分享与交流载体,难免错漏,欢迎各位同仁提出宝贵意见和问题,以便共同进步。 本文为原创内容,任何形式的转载必须注明出处及原作者。 在开发高性能 ArkUI 应…

Spring |(五)IoC/DI的注解开发

文章目录 📚核心容器🐇环境准备🐇容器的创建方式🐇bean的三种获取方式🐇BeanFactory的使用 📚IoC/DI注解开发🐇环境准备🐇注解开发定义bean🐇纯注解开发模式&#x1f407…

uniapp-vue2引用了vue-inset-loader插件编译小程序报错

报错信息 Error: Vue packages version mismatch: - vue3.2.45 (D:\qjy-myApp\admin-app\node_modules\vue\index.js) - vue-template-compiler2.7.16 (D:\qjy-myApp\admin-app\node_modules\vue-template-compiler\package.json) This may cause things to work incorrectly.…

力扣 53. 最大子数组和

🔗 https://leetcode.cn/problems/maximum-subarray 题目 给定一个数组,有正数,有复数,返回子序列之和的最大值 思路 这个题目《编程珠玑》讲过,思路从普速的模拟,到 presum 优化,到代码很容…

数字基带传输仿真

基于给定的 “ 升余弦滚降传输误码率测量 ”Simulink 代码: ( 1 )信道加入高斯白噪声,信噪比 SNR[-10,20]dB ; ( 2 )使用升余弦发送滤波器和升余弦接收滤波器; ( 3 …

mysql覆盖索引回表查询

需要的前置知识: 什么是聚簇索引、非聚簇索引、回表查询-CSDN博客 什么是覆盖索引 就是查询的字段是索引里的。打个比方,有个user表,字段为id、name、gender,id是主键,有聚簇索引,name是非聚簇索引。 现在…

Linux 命令之 `man` 命令详解

在Linux系统中,man(manual的缩写)命令是一个非常重要的工具,用于查看命令的手册页(manual pages)。这些手册页包含了关于命令的详细描述、选项、用法示例和相关信息。本文将详细介绍man命令的使用方法和一些…

AIGC与SEO:如何提升网站流量

前言 随着互联网的不断发展,网站流量已经成为评估一个网站成功与否的关键指标之一。而在提升网站流量的各种策略中,SEO(搜索引擎优化)无疑是最为重要且广泛应用的手段之一。近年来,人工智能生成内容(AIGC&…