Linux第97步_使用“Linux自带的按键驱动程序”测试“按键输入”

server/2024/11/24 22:27:06/

使用“Linux自带的按键驱动程序”测试“按键输入”,熟悉图形化配置。

Linux内核定时器的“系统节拍率”默认选择100Hz。

1 、通过“linux内核图形化配置界面”令“CONFIG_LEDS_GPIO=y”

1)、打开终端,输入“cd linux/atk-mp1/linux/my_linux/linux-5.4.31/回车”,切换到“linux/atk-mp1/linux/my_linux/linux-5.4.31/”目录;输入“make menuconfig回车”,打开linux内核图形化配置界面:

2)、移动“向下光标键”,至“Device Drivers”

3)、输入“回车键”,得到下图:

4)、移动“向下光标键”,至“Input device support”

5)、输入“回车”,得到下图:

6)、按“Y”,移动“向下光标键”至“Keyboards”,得到下图:

7)、先按“Y”键,再按“回车键”,得到下图:

8)、移到“向下光标键”至“GPIO Buttons

9)、按下“Y”键,使此选项前面变为“<*>”,即选中Linux内核自带的KEY驱动。然后按“TAB键”至“Exit”,再按“回车”退出,直至到达下面这个界面:

10)、按“TAB键”至“Save”,按下“回车”,得到下面的界面。

11)、输入“./arch/arm/configs/stm32mp1_atk_defconfig”,移动“向下光标键”至“Ok”,得到下图:

12)、按“回车”,保存完成。得到下面的界面。

13)、按“回车”,退出。

14)、按两次“ESC键”,得到下图:

2、打开“./arch/arm/configs/stm32mp1_atk_defconfig”,查看“CONFIG_KEYBOARD_GPIO=y”。

1)、输入“vi  ./arch/arm/configs/stm32mp1_atk_defconfig回车”,打开“stm32mp1_atk_defconfig”文件。

2)、按“ESC键”,按下“/”,后,输入“CONFIG_KEYBOARD_GPIO回车”,搜索“CONFIG_LEDS_GPIO”,见下图:

3)、发现“CONFIG_KEYBOARD_GPIO=y”,按“ESC键”,按“:q!回车”,不保存退出;

3、修改设备树

1)、打开虚拟机上“VSCode”,点击“文件”,点击“打开文件夹”,点击“zgq”,点击“linux”,点击“atk-mp1”,点击“linux”,点击“my_linux”,点击“linux-5.4.31”,点击“确定”,点击“stm32mp157d-atk.dts”。

2)、先添加一个头文件“dt-bindings/input/input.h”此文件就是“linux,code”属性的按键宏定义。

添加“#include "dt-bindings/input/input.h"”,见下图:

添加内容如下:

gpio-keys {

compatible = "gpio-keys";/*设置属性compatible的值为"gpio-keys"*/

pinctrl-names = "default";

pinctrl-0 = <&key_pins_a>;

/*“&gpiog”表示key-gpio引脚所使用的IO属于GPIOG组*/

/*“3’表示GPIOG组的第3号IO,即PG3引脚*/

/*“GPIO_ACTIVE_LOW”表示低电平有效,“GPIO_PULL_UP”表示上拉*/

autorepeat;/*表示按键支持连按*/

key0 {

label = "GPIO Key L";

linux,code = <KEY_L>;

gpios = <&gpiog 3 GPIO_ACTIVE_LOW>;

/*“&gpiog”表示gpios引脚所使用的IO属于GPIOG组*/

/*“3’表示GPIOG组的第3号IO,即PG3引脚*/

/*“GPIO_ACTIVE_LOW”表示低电平有效,“GPIO_PULL_UP”表示上拉*/

};

key1 {

label = "GPIO Key S";

linux,code = <KEY_S>;

gpios = <&gpioh 7 GPIO_ACTIVE_LOW>;

/*“&gpioh”表示gpios引脚所使用的IO属于GPIOH组*/

/*“7’表示GPIOH组的第7号IO,即PH7引脚*/

/*“GPIO_ACTIVE_LOW”表示低电平有效,“GPIO_PULL_UP”表示上拉*/

};

wkup {

label = "GPIO Key Enter";

linux,code = <KEY_ENTER>;

gpios = <&gpioa 0 GPIO_ACTIVE_HIGH>;

/*“&gpioa”表示gpios引脚所使用的IO属于GPIOA组*/

/*“0’表示GPIOA组的第0号IO,即PA0引脚*/

/*“GPIO_ACTIVE_LOW”表示低电平有效,“GPIO_PULL_UP”表示上拉*/

gpio-key,wakeup;

};

};

4编译设备树

在VSCode终端,输入“make dtbs回车”,执行编译设备树

②输入“ls arch/arm/boot/uImage -l

查看是否生成了新的“uImage”文件

③输入“ls arch/arm/boot/dts/stm32mp157d-atk.dtb -l

查看是否生成了新的“stm32mp157d-atk.dtb”文件

4)、拷贝输出的文件:

①输入“cp arch/arm/boot/uImage /home/zgq/linux/atk-mp1/linux/bootfs/ -f回车”,执行文件拷贝,准备烧录到EMMC;

②输入“cp arch/arm/boot/dts/stm32mp157d-atk.dtb /home/zgq/linux/atk-mp1/linux/bootfs/ -f回车”,执行文件拷贝,准备烧录到EMMC

③输入“cp arch/arm/boot/uImage /home/zgq/linux/tftpboot/ -f回车”,执行文件拷贝,准备从tftp下载;

④输入“cp arch/arm/boot/dts/stm32mp157d-atk.dtb /home/zgq/linux/tftpboot/ -f回车”,执行文件拷贝,准备从tftp下载;

⑤输入“ls -l /home/zgq/linux/atk-mp1/linux/bootfs/回车”,查看“/home/zgq/linux/atk-mp1/linux/bootfs/”目录下的所有文件和文件夹

⑥输入“ls -l /home/zgq/linux/tftpboot/回车”,查看“/home/zgq/linux/tftpboot/”目录下的所有文件和文件夹

⑦输入“chmod 777 /home/zgq/linux/tftpboot/stm32mp157d-atk.dtb回车

给“stm32mp157d-atk.dtb”文件赋予可执行权限

⑧输入“chmod 777 /home/zgq/linux/tftpboot/uImage回车 ,给“uImage”文件赋予可执行权限

⑨输入“ls /home/zgq/linux/tftpboot/ -l回车”,查看“/home/zgq/linux/tftpboot/”目录下的所有文件和文件夹

5测试

1)、给开发板上电,用新的umage和stm32mpl57d-atk.dtb启动开发板。

2)、输入“root回车”。

3)、输入“cd /lib/modules/5.4.31/回车

在nfs挂载中,切换到“/lib/modules/5.4.31/”目录,

注意:“lib/modules/5.4.31/在虚拟机中是位于“/home/zgq/linux/nfs/rootfs/”目录下,但在开发板中,却是位于根目录中

4)、输入“ls /dev/input/ -l回车”,发现有“/dev/input”这个目录

5)、输入“hexdump /dev/input/event0回车”,执行读按键KEY0,KEY1和wkup

观察串口输出。

6、了解“gpio_keys.c”

Linux内核自带的KEY驱动文件为drivers/input/keyboard/gpio_keys.c,gpio_keys.c采用了 platfomm驱动框架,在KEY驱动上使用了input子系统实现。

gpio_keys.c如下:

#include <linux/module.h>

#include <linux/init.h>

#include <linux/fs.h>

#include <linux/interrupt.h>

#include <linux/irq.h>

#include <linux/sched.h>

#include <linux/pm.h>

#include <linux/slab.h>

#include <linux/sysctl.h>

#include <linux/proc_fs.h>

#include <linux/delay.h>

#include <linux/platform_device.h>

#include <linux/input.h>

#include <linux/gpio_keys.h>

#include <linux/workqueue.h>

#include <linux/gpio.h>

#include <linux/gpio/consumer.h>

#include <linux/of.h>

#include <linux/of_irq.h>

#include <linux/spinlock.h>

#include <dt-bindings/input/gpio-keys.h>

struct gpio_button_data {

const struct gpio_keys_button *button;

struct input_dev *input;

struct gpio_desc *gpiod;

unsigned short *code;

struct timer_list release_timer;

unsigned int release_delay; /* in msecs, for IRQ-only buttons */

struct delayed_work work;

unsigned int software_debounce; /* in msecs, for GPIO-driven buttons */

unsigned int irq;

unsigned int wakeup_trigger_type;

spinlock_t lock;

bool disabled;

bool key_pressed;

bool suspended;

};

struct gpio_keys_drvdata {

const struct gpio_keys_platform_data *pdata;

struct input_dev *input;

struct mutex disable_lock;

unsigned short *keymap;

struct gpio_button_data data[0];

};

/*

 * SYSFS interface for enabling/disabling keys and switches:

 *

 * There are 4 attributes under /sys/devices/platform/gpio-keys/

 * keys [ro]      - bitmap of keys (EV_KEY) which can be disabled

 * switches [ro]  - bitmap of switches (EV_SW) which can be disabled

 * disabled_keys [rw]     - bitmap of keys currently disabled

 * disabled_switches [rw] - bitmap of switches currently disabled

 * Userland can change these values and hence disable event generation

 * for each key (or switch). Disabling a key means its interrupt line

 * is disabled.

 *

 * For example, if we have following switches set up as gpio-keys:

 * SW_DOCK = 5

 * SW_CAMERA_LENS_COVER = 9

 * SW_KEYPAD_SLIDE = 10

 * SW_FRONT_PROXIMITY = 11

 * This is read from switches:

 * 11-9,5

 * Next we want to disable proximity (11) and dock (5), we write:

 * 11,5

 * to file disabled_switches. Now proximity and dock IRQs are disabled.

 * This can be verified by reading the file disabled_switches:

 * 11,5

 * If we now want to enable proximity (11) switch we write:

 * 5

 * to disabled_switches.

 *

 * We can disable only those keys which don't allow sharing the irq.

 */

/**

 * get_n_events_by_type() - returns maximum number of events per @type

 * @type: type of button (%EV_KEY, %EV_SW)

 *

 * Return value of this function can be used to allocate bitmap

 * large enough to hold all bits for given type.

 */

static int get_n_events_by_type(int type)

{

BUG_ON(type != EV_SW && type != EV_KEY);

return (type == EV_KEY) ? KEY_CNT : SW_CNT;

}

/**

 * get_bm_events_by_type() - returns bitmap of supported events per @type

 * @input: input device from which bitmap is retrieved

 * @type: type of button (%EV_KEY, %EV_SW)

 *

 * Return value of this function can be used to allocate bitmap

 * large enough to hold all bits for given type.

 */

static const unsigned long *get_bm_events_by_type(struct input_dev *dev, int type)

{

BUG_ON(type != EV_SW && type != EV_KEY);

return (type == EV_KEY) ? dev->keybit : dev->swbit;

}

/**

 * gpio_keys_disable_button() - disables given GPIO button

 * @bdata: button data for button to be disabled

 *

 * Disables button pointed by @bdata. This is done by masking

 * IRQ line. After this function is called, button won't generate

 * input events anymore. Note that one can only disable buttons

 * that don't share IRQs.

 *

 * Make sure that @bdata->disable_lock is locked when entering

 * this function to avoid races when concurrent threads are

 * disabling buttons at the same time.

 */

static void gpio_keys_disable_button(struct gpio_button_data *bdata)

{

if (!bdata->disabled) {

/*Disable IRQ and associated timer/work structure.*/

disable_irq(bdata->irq);

if (bdata->gpiod) cancel_delayed_work_sync(&bdata->work);

else del_timer_sync(&bdata->release_timer); /* 删除timer */

bdata->disabled = true;

}

}

/**

 * gpio_keys_enable_button() - enables given GPIO button

 * @bdata: button data for button to be disabled

 *

 * Enables given button pointed by @bdata.

 *

 * Make sure that @bdata->disable_lock is locked when entering

 * this function to avoid races with concurrent threads trying

 * to enable the same button at the same time.

 */

static void gpio_keys_enable_button(struct gpio_button_data *bdata)

{

if (bdata->disabled)

{

enable_irq(bdata->irq);

bdata->disabled = false;

}

}

/**

 * gpio_keys_attr_show_helper() - fill in stringified bitmap of buttons

 * @ddata: pointer to drvdata

 * @buf: buffer where stringified bitmap is written

 * @type: button type (%EV_KEY, %EV_SW)

 * @only_disabled: does caller want only those buttons that are

 *                 currently disabled or all buttons that can be

 *                 disabled

 *

 * This function writes buttons that can be disabled to @buf. If

 * @only_disabled is true, then @buf contains only those buttons

 * that are currently disabled. Returns 0 on success or negative

 * errno on failure.

 */

static ssize_t gpio_keys_attr_show_helper(struct gpio_keys_drvdata *ddata,

  char *buf, unsigned int type,

  bool only_disabled)

{

int n_events = get_n_events_by_type(type);

unsigned long *bits;

ssize_t ret;

int i;

bits = bitmap_zalloc(n_events, GFP_KERNEL);

if (!bits)

return -ENOMEM;

for (i = 0; i < ddata->pdata->nbuttons; i++) {

struct gpio_button_data *bdata = &ddata->data[i];

if (bdata->button->type != type)

continue;

if (only_disabled && !bdata->disabled)

continue;

__set_bit(*bdata->code, bits);

}

ret = scnprintf(buf, PAGE_SIZE - 1, "%*pbl", n_events, bits);

buf[ret++] = '\n';

buf[ret] = '\0';

bitmap_free(bits);

return ret;

}

/**

 * gpio_keys_attr_store_helper() - enable/disable buttons based on given bitmap

 * @ddata: pointer to drvdata

 * @buf: buffer from userspace that contains stringified bitmap

 * @type: button type (%EV_KEY, %EV_SW)

 *

 * This function parses stringified bitmap from @buf and disables/enables

 * GPIO buttons accordingly. Returns 0 on success and negative error

 * on failure.

 */

static ssize_t gpio_keys_attr_store_helper(struct gpio_keys_drvdata *ddata,

   const char *buf, unsigned int type)

{

int n_events = get_n_events_by_type(type);

const unsigned long *bitmap = get_bm_events_by_type(ddata->input, type);

unsigned long *bits;

ssize_t error;

int i;

bits = bitmap_zalloc(n_events, GFP_KERNEL);

if (!bits) return -ENOMEM;

error = bitmap_parselist(buf, bits, n_events);

if (error) goto out;

/* First validate */

if (!bitmap_subset(bits, bitmap, n_events)) {

error = -EINVAL;

goto out;

}

for (i = 0; i < ddata->pdata->nbuttons; i++)

{

struct gpio_button_data *bdata = &ddata->data[i];

if (bdata->button->type != type) continue;

if (test_bit(*bdata->code, bits) && !bdata->button->can_disable)

{

error = -EINVAL;

goto out;

}

}

mutex_lock(&ddata->disable_lock);

for (i = 0; i < ddata->pdata->nbuttons; i++)

{

struct gpio_button_data *bdata = &ddata->data[i];

if (bdata->button->type != type) continue;

if (test_bit(*bdata->code, bits)) gpio_keys_disable_button(bdata);

else gpio_keys_enable_button(bdata);

}

mutex_unlock(&ddata->disable_lock);

out:

bitmap_free(bits);

return error;

}

#define ATTR_SHOW_FN(name, type, only_disabled) \

static ssize_t gpio_keys_show_##name(struct device *dev, \

     struct device_attribute *attr, \

     char *buf) \

{ \

struct platform_device *pdev = to_platform_device(dev); \

struct gpio_keys_drvdata *ddata = platform_get_drvdata(pdev); \

\

return gpio_keys_attr_show_helper(ddata, buf,type, only_disabled); \

}

ATTR_SHOW_FN(keys, EV_KEY, false);

ATTR_SHOW_FN(switches, EV_SW, false);

ATTR_SHOW_FN(disabled_keys, EV_KEY, true);

ATTR_SHOW_FN(disabled_switches, EV_SW, true);

/*

 * ATTRIBUTES:

 *

 * /sys/devices/platform/gpio-keys/keys [ro]

 * /sys/devices/platform/gpio-keys/switches [ro]

 */

static DEVICE_ATTR(keys, S_IRUGO, gpio_keys_show_keys, NULL);

static DEVICE_ATTR(switches, S_IRUGO, gpio_keys_show_switches, NULL);

#define ATTR_STORE_FN(name, type) \

static ssize_t gpio_keys_store_##name(struct device *dev, \

      struct device_attribute *attr, \

      const char *buf, \

      size_t count) \

{ \

struct platform_device *pdev = to_platform_device(dev); \

struct gpio_keys_drvdata *ddata = platform_get_drvdata(pdev); \

ssize_t error; \

\

error = gpio_keys_attr_store_helper(ddata, buf, type); \

if (error) \

return error; \

\

return count; \

}

ATTR_STORE_FN(disabled_keys, EV_KEY);

ATTR_STORE_FN(disabled_switches, EV_SW);

/*

 * ATTRIBUTES:

 *

 * /sys/devices/platform/gpio-keys/disabled_keys [rw]

 * /sys/devices/platform/gpio-keys/disables_switches [rw]

 */

static DEVICE_ATTR(disabled_keys, S_IWUSR | S_IRUGO,

   gpio_keys_show_disabled_keys,

   gpio_keys_store_disabled_keys);

static DEVICE_ATTR(disabled_switches, S_IWUSR | S_IRUGO,

   gpio_keys_show_disabled_switches,

   gpio_keys_store_disabled_switches);

static struct attribute *gpio_keys_attrs[] = {

&dev_attr_keys.attr,

&dev_attr_switches.attr,

&dev_attr_disabled_keys.attr,

&dev_attr_disabled_switches.attr,

NULL,

};

ATTRIBUTE_GROUPS(gpio_keys);

static void gpio_keys_gpio_report_event(struct gpio_button_data *bdata)

{

const struct gpio_keys_button *button = bdata->button;

struct input_dev *input = bdata->input;

unsigned int type = button->type ?: EV_KEY;

int state;

state = gpiod_get_value_cansleep(bdata->gpiod);

if (state < 0) {

dev_err(input->dev.parent,

"failed to get gpio state: %d\n", state);

return;

}

if (type == EV_ABS)

{

if (state) input_event(input, type, button->code, button->value);

}

  else { input_event(input, type, *bdata->code, state);}

input_sync(input);

}

static void gpio_keys_gpio_work_func(struct work_struct *work)

{

struct gpio_button_data *bdata = container_of(work, struct gpio_button_data, work.work);

gpio_keys_gpio_report_event(bdata);

if (bdata->button->wakeup) pm_relax(bdata->input->dev.parent);

}

static irqreturn_t gpio_keys_gpio_isr(int irq, void *dev_id)

{

struct gpio_button_data *bdata = dev_id;

BUG_ON(irq != bdata->irq);

if (bdata->button->wakeup)

{

const struct gpio_keys_button *button = bdata->button;

pm_stay_awake(bdata->input->dev.parent);

if (bdata->suspended  && (button->type == 0 || button->type == EV_KEY)) {

/*

 * Simulate wakeup key press in case the key has

 * already released by the time we got interrupt

 * handler to run.

 */

input_report_key(bdata->input, button->code, 1);

}

}

mod_delayed_work(system_wq,&bdata->work,msecs_to_jiffies(bdata->software_debounce);

return IRQ_HANDLED;

}

static void gpio_keys_irq_timer(struct timer_list *t)

{

struct gpio_button_data *bdata = from_timer(bdata, t, release_timer);

struct input_dev *input = bdata->input;

unsigned long flags;

spin_lock_irqsave(&bdata->lock, flags);

if (bdata->key_pressed) {

input_event(input, EV_KEY, *bdata->code, 0);

input_sync(input);

bdata->key_pressed = false;

}

spin_unlock_irqrestore(&bdata->lock, flags);

}

static irqreturn_t gpio_keys_irq_isr(int irq, void *dev_id)

{

struct gpio_button_data *bdata = dev_id;

struct input_dev *input = bdata->input;

unsigned long flags;

BUG_ON(irq != bdata->irq);

spin_lock_irqsave(&bdata->lock, flags);

if (!bdata->key_pressed)

{

if (bdata->button->wakeup) pm_wakeup_event(bdata->input->dev.parent, 0);

input_event(input, EV_KEY, *bdata->code, 1);

input_sync(input);

if (!bdata->release_delay)

{

input_event(input, EV_KEY, *bdata->code, 0);

input_sync(input);

goto out;

}

bdata->key_pressed = true;

}

if (bdata->release_delay) mod_timer(&bdata->release_timer,jiffies + msecs_to_jiffies(bdata->release_delay));

out:

spin_unlock_irqrestore(&bdata->lock, flags);

return IRQ_HANDLED;

}

static void gpio_keys_quiesce_key(void *data)

{

struct gpio_button_data *bdata = data;

if (bdata->gpiod) cancel_delayed_work_sync(&bdata->work);

else del_timer_sync(&bdata->release_timer); /* 删除timer */

}

static int gpio_keys_setup_key(struct platform_device *pdev,

struct input_dev *input,

struct gpio_keys_drvdata *ddata,

const struct gpio_keys_button *button,

int idx,

struct fwnode_handle *child)

{

const char *desc = button->desc ? button->desc : "gpio_keys";

struct device *dev = &pdev->dev;

struct gpio_button_data *bdata = &ddata->data[idx];

irq_handler_t isr;

unsigned long irqflags;

int irq;

int error;

bdata->input = input;

bdata->button = button;

spin_lock_init(&bdata->lock);

if (child)

{

bdata->gpiod = devm_fwnode_get_gpiod_from_child(dev, NULL,

child,

GPIOD_IN,

desc);

if (IS_ERR(bdata->gpiod)) {

error = PTR_ERR(bdata->gpiod);

if (error == -ENOENT) {

/*

 * GPIO is optional, we may be dealing with

 * purely interrupt-driven setup.

 */

bdata->gpiod = NULL;

} else {

if (error != -EPROBE_DEFER)

dev_err(dev, "failed to get gpio: %d\n",

error);

return error;

}

}

} else if (gpio_is_valid(button->gpio)) {

/*

 * Legacy GPIO number, so request the GPIO here and

 * convert it to descriptor.

 */

unsigned flags = GPIOF_IN;

if (button->active_low)

flags |= GPIOF_ACTIVE_LOW;

error = devm_gpio_request_one(dev, button->gpio, flags, desc);

if (error < 0) {

dev_err(dev, "Failed to request GPIO %d, error %d\n",

button->gpio, error);

return error;

}

bdata->gpiod = gpio_to_desc(button->gpio);

if (!bdata->gpiod)

return -EINVAL;

}

if (bdata->gpiod) {

bool active_low = gpiod_is_active_low(bdata->gpiod);

if (button->debounce_interval) {

error = gpiod_set_debounce(bdata->gpiod,

button->debounce_interval * 1000);

/* use timer if gpiolib doesn't provide debounce */

if (error < 0)

bdata->software_debounce =

button->debounce_interval;

}

if (button->irq) {

bdata->irq = button->irq;

} else {

irq = gpiod_to_irq(bdata->gpiod);

if (irq < 0) {

error = irq;

dev_err(dev,

"Unable to get irq number for GPIO %d, error %d\n",

button->gpio, error);

return error;

}

bdata->irq = irq;

}

INIT_DELAYED_WORK(&bdata->work, gpio_keys_gpio_work_func);

isr = gpio_keys_gpio_isr;

irqflags = IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING;

switch (button->wakeup_event_action) {

case EV_ACT_ASSERTED:

bdata->wakeup_trigger_type = active_low ?

IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING;

break;

case EV_ACT_DEASSERTED:

bdata->wakeup_trigger_type = active_low ?

IRQ_TYPE_EDGE_RISING : IRQ_TYPE_EDGE_FALLING;

break;

case EV_ACT_ANY:

/* fall through */

default:

/*

 * For other cases, we are OK letting suspend/resume

 * not reconfigure the trigger type.

 */

break;

}

} else {

if (!button->irq) {

dev_err(dev, "Found button without gpio or irq\n");

return -EINVAL;

}

bdata->irq = button->irq;

if (button->type && button->type != EV_KEY) {

dev_err(dev, "Only EV_KEY allowed for IRQ buttons.\n");

return -EINVAL;

}

bdata->release_delay = button->debounce_interval;

timer_setup(&bdata->release_timer, gpio_keys_irq_timer, 0);

isr = gpio_keys_irq_isr;

irqflags = 0;

/*

 * For IRQ buttons, there is no interrupt for release.

 * So we don't need to reconfigure the trigger type for wakeup.

 */

}

bdata->code = &ddata->keymap[idx];

*bdata->code = button->code;

input_set_capability(input, button->type ?: EV_KEY, *bdata->code);

/*

 * Install custom action to cancel release timer and

 * workqueue item.

 */

error = devm_add_action(dev, gpio_keys_quiesce_key, bdata);

if (error) {

dev_err(dev, "failed to register quiesce action, error: %d\n",

error);

return error;

}

/*

 * If platform has specified that the button can be disabled,

 * we don't want it to share the interrupt line.

 */

if (!button->can_disable)

irqflags |= IRQF_SHARED;

error = devm_request_any_context_irq(dev, bdata->irq, isr, irqflags,

     desc, bdata);

if (error < 0) {

dev_err(dev, "Unable to claim irq %d; error %d\n",

bdata->irq, error);

return error;

}

return 0;

}

static void gpio_keys_report_state(struct gpio_keys_drvdata *ddata)

{

struct input_dev *input = ddata->input;

int i;

for (i = 0; i < ddata->pdata->nbuttons; i++) {

struct gpio_button_data *bdata = &ddata->data[i];

if (bdata->gpiod) gpio_keys_gpio_report_event(bdata);

}

input_sync(input);

}

static int gpio_keys_open(struct input_dev *input)

{

struct gpio_keys_drvdata *ddata = input_get_drvdata(input);

const struct gpio_keys_platform_data *pdata = ddata->pdata;

int error;

if (pdata->enable)

{

error = pdata->enable(input->dev.parent);

if (error) return error;

}

/* Report current state of buttons that are connected to GPIOs */

gpio_keys_report_state(ddata);

return 0;

}

static void gpio_keys_close(struct input_dev *input)

{

struct gpio_keys_drvdata *ddata = input_get_drvdata(input);

const struct gpio_keys_platform_data *pdata = ddata->pdata;

if (pdata->disable) pdata->disable(input->dev.parent);

}

/*

 * Handlers for alternative sources of platform_data

 */

/*

 * Translate properties into platform_data

 */

static struct gpio_keys_platform_data *gpio_keys_get_devtree_pdata(struct device *dev)

{

struct gpio_keys_platform_data *pdata;

struct gpio_keys_button *button;

struct fwnode_handle *child;

int nbuttons;

nbuttons = device_get_child_node_count(dev);

if (nbuttons == 0) return ERR_PTR(-ENODEV);

pdata = devm_kzalloc(dev,

     sizeof(*pdata) + nbuttons * sizeof(*button),

     GFP_KERNEL);

if (!pdata) return ERR_PTR(-ENOMEM);

button = (struct gpio_keys_button *)(pdata + 1);

pdata->buttons = button;

pdata->nbuttons = nbuttons;

pdata->rep = device_property_read_bool(dev, "autorepeat");

device_property_read_string(dev, "label", &pdata->name);

device_for_each_child_node(dev, child)

{

if (is_of_node(child))

button->irq = irq_of_parse_and_map(to_of_node(child), 0);

if (fwnode_property_read_u32(child, "linux,code",&button->code))

{

dev_err(dev, "Button without keycode\n");

fwnode_handle_put(child);

return ERR_PTR(-EINVAL);

}

fwnode_property_read_string(child, "label", &button->desc);

if (fwnode_property_read_u32(child, "linux,input-type",&button->type))

button->type = EV_KEY;

button->wakeup =

fwnode_property_read_bool(child, "wakeup-source") ||

/* legacy name */

fwnode_property_read_bool(child, "gpio-key,wakeup");

fwnode_property_read_u32(child, "wakeup-event-action",

 &button->wakeup_event_action);

button->can_disable =

fwnode_property_read_bool(child, "linux,can-disable");

if (fwnode_property_read_u32(child, "debounce-interval",

 &button->debounce_interval))

button->debounce_interval = 5;

button++;

}

return pdata;

}

static const struct of_device_id gpio_keys_of_match[] = {

{ .compatible = "gpio-keys", },

{ },

};

MODULE_DEVICE_TABLE(of, gpio_keys_of_match);

static int gpio_keys_probe(struct platform_device *pdev)

{

struct device *dev = &pdev->dev;

const struct gpio_keys_platform_data *pdata = dev_get_platdata(dev);

struct fwnode_handle *child = NULL;

struct gpio_keys_drvdata *ddata;

struct input_dev *input;

int i, error;

int wakeup = 0;

if (!pdata) {

pdata = gpio_keys_get_devtree_pdata(dev);

if (IS_ERR(pdata)) return PTR_ERR(pdata);

}

ddata = devm_kzalloc(dev, struct_size(ddata, data, pdata->nbuttons),GFP_KERNEL);

if (!ddata) {

dev_err(dev, "failed to allocate state\n");

return -ENOMEM;

}

ddata->keymap = devm_kcalloc(dev,pdata->nbuttons, sizeof(ddata->keymap[0]),

GFP_KERNEL);

if (!ddata->keymap) return -ENOMEM;

input = devm_input_allocate_device(dev);

if (!input) {

dev_err(dev, "failed to allocate input device\n");

return -ENOMEM;

}

ddata->pdata = pdata;

ddata->input = input;

mutex_init(&ddata->disable_lock);

platform_set_drvdata(pdev, ddata);

input_set_drvdata(input, ddata);

input->name = pdata->name ? : pdev->name;

input->phys = "gpio-keys/input0";

input->dev.parent = dev;

input->open = gpio_keys_open;

input->close = gpio_keys_close;

input->id.bustype = BUS_HOST;

input->id.vendor = 0x0001;

input->id.product = 0x0001;

input->id.version = 0x0100;

input->keycode = ddata->keymap;

input->keycodesize = sizeof(ddata->keymap[0]);

input->keycodemax = pdata->nbuttons;

/* Enable auto repeat feature of Linux input subsystem */

if (pdata->rep)

__set_bit(EV_REP, input->evbit);

for (i = 0; i < pdata->nbuttons; i++) {

const struct gpio_keys_button *button = &pdata->buttons[i];

if (!dev_get_platdata(dev)) {

child = device_get_next_child_node(dev, child);

if (!child) {

dev_err(dev,

"missing child device node for entry %d\n",

i);

return -EINVAL;

}

}

error = gpio_keys_setup_key(pdev, input, ddata,

    button, i, child);

if (error) {

fwnode_handle_put(child);

return error;

}

if (button->wakeup) wakeup = 1;

}

fwnode_handle_put(child);

error = input_register_device(input);

if (error) {

dev_err(dev, "Unable to register input device, error: %d\n",

error);

return error;

}

device_init_wakeup(dev, wakeup);

return 0;

}

static int __maybe_unused

gpio_keys_button_enable_wakeup(struct gpio_button_data *bdata)

{

int error;

error = enable_irq_wake(bdata->irq);

if (error) {

dev_err(bdata->input->dev.parent,

"failed to configure IRQ %d as wakeup source: %d\n",

bdata->irq, error);

return error;

}

if (bdata->wakeup_trigger_type) {

error = irq_set_irq_type(bdata->irq,

 bdata->wakeup_trigger_type);

if (error) {

dev_err(bdata->input->dev.parent,

"failed to set wakeup trigger %08x for IRQ %d: %d\n",

bdata->wakeup_trigger_type, bdata->irq, error);

disable_irq_wake(bdata->irq);

return error;

}

}

return 0;

}

static void __maybe_unused

gpio_keys_button_disable_wakeup(struct gpio_button_data *bdata)

{

int error;

/*

 * The trigger type is always both edges for gpio-based keys and we do

 * not support changing wakeup trigger for interrupt-based keys.

 */

if (bdata->wakeup_trigger_type) {

error = irq_set_irq_type(bdata->irq, IRQ_TYPE_EDGE_BOTH);

if (error)

dev_warn(bdata->input->dev.parent,

 "failed to restore interrupt trigger for IRQ %d: %d\n",

 bdata->irq, error);

}

error = disable_irq_wake(bdata->irq);

if (error)

dev_warn(bdata->input->dev.parent,

 "failed to disable IRQ %d as wake source: %d\n",

 bdata->irq, error);

}

static int __maybe_unused

gpio_keys_enable_wakeup(struct gpio_keys_drvdata *ddata)

{

struct gpio_button_data *bdata;

int error;

int i;

for (i = 0; i < ddata->pdata->nbuttons; i++) {

bdata = &ddata->data[i];

if (bdata->button->wakeup) {

error = gpio_keys_button_enable_wakeup(bdata);

if (error)

goto err_out;

}

bdata->suspended = true;

}

return 0;

err_out:

while (i--) {

bdata = &ddata->data[i];

if (bdata->button->wakeup)

gpio_keys_button_disable_wakeup(bdata);

bdata->suspended = false;

}

return error;

}

static void __maybe_unused

gpio_keys_disable_wakeup(struct gpio_keys_drvdata *ddata)

{

struct gpio_button_data *bdata;

int i;

for (i = 0; i < ddata->pdata->nbuttons; i++) {

bdata = &ddata->data[i];

bdata->suspended = false;

if (irqd_is_wakeup_set(irq_get_irq_data(bdata->irq)))

gpio_keys_button_disable_wakeup(bdata);

}

}

static int __maybe_unused gpio_keys_suspend(struct device *dev)

{

struct gpio_keys_drvdata *ddata = dev_get_drvdata(dev);

struct input_dev *input = ddata->input;

int error;

if (device_may_wakeup(dev))

{

error = gpio_keys_enable_wakeup(ddata);

if (error) return error;

}

else {

mutex_lock(&input->mutex);

if (input->users) gpio_keys_close(input);

mutex_unlock(&input->mutex);

}

return 0;

}

static int __maybe_unused gpio_keys_resume(struct device *dev)

{

struct gpio_keys_drvdata *ddata = dev_get_drvdata(dev);

struct input_dev *input = ddata->input;

int error = 0;

if (device_may_wakeup(dev))

{

gpio_keys_disable_wakeup(ddata);

}

else

{ mutex_lock(&input->mutex);

if (input->users) error = gpio_keys_open(input);

mutex_unlock(&input->mutex);

}

if (error)

return error;

gpio_keys_report_state(ddata);

return 0;

}

static SIMPLE_DEV_PM_OPS(gpio_keys_pm_ops, gpio_keys_suspend, gpio_keys_resume);

static void gpio_keys_shutdown(struct platform_device *pdev)

{

int ret;

ret = gpio_keys_suspend(&pdev->dev);

if (ret) dev_err(&pdev->dev, "failed to shutdown\n");

}

static struct platform_driver gpio_keys_device_driver = {

.probe = gpio_keys_probe,

.shutdown = gpio_keys_shutdown,

.driver = {

.name = "gpio-keys",

.pm = &gpio_keys_pm_ops,

.of_match_table = gpio_keys_of_match,

.dev_groups = gpio_keys_groups,

}

};

static int __init gpio_keys_init(void)

{

return platform_driver_register(&gpio_keys_device_driver);

}

static void __exit gpio_keys_exit(void)

{

platform_driver_unregister(&gpio_keys_device_driver);

}

late_initcall(gpio_keys_init);

module_exit(gpio_keys_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Phil Blundell <pb@handhelds.org>");

MODULE_DESCRIPTION("Keyboard driver for GPIOs");

MODULE_ALIAS("platform:gpio-keys");


http://www.ppmy.cn/server/144649.html

相关文章

C++ 红黑树

红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制&#xff0c;红黑树确保没有一条路径会比其他路径长出俩倍&#xff0c;因而…

【国产MCU系列】-GD32F470-通用同步异步收发器(USART)

通用同步异步收发器(USART) 文章目录 通用同步异步收发器(USART)1、USART与UART介绍2、GD32F4的USART2.1 GD32F4的USART介绍与特性2.2 GD32F4的USART寄存器列表3、USART数据发送与接收与配置3.1 数据帧格式与配置3.2 波特率发生与配置3.3 UART发送器配置与步骤3.4 UART接收…

Linux 后台运行的方式启动一个 Java 应用程序

nohup java -jar -Dapp.iddefect-web -Dspring.profiles.activetest -Denvtest /home/webedit/source/server/mall_server/webshop/target/webshop-0.0.1-SNAPSHOT.jar >> /home/webedit/deploy/webshop.log 2>&1 &① nohup 表示忽略挂断信号&#xff08;SIG…

Maven高级篇

本篇主要讲解做项目过程中学习到一些关于maven使用的知识&#xff0c;主要包括分模块设计、继承&#xff0c;继承中的版本锁定&#xff0c;maven的聚合以及maven私服。 目录 一、分模块设计 二、继承 三、继承中的版本锁定 四、maven的聚合 五、maven私服 一、分模块设计…

JavaWeb-表单-07

表单标签 介绍 code: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>HTML-表单</title> &…

如何能让安全责任更清晰——构建清晰安全责任体系策略与实践

安全已成为各行各业不可忽视的重要议题。然而&#xff0c;要确保组织的安全运行&#xff0c;仅仅有安全意识是不够的&#xff0c;还需要有一套清晰明确的安全责任体系来支撑。这套体系能够明确每个人的安全职责&#xff0c;促进安全管理工作的有序进行&#xff0c;降低事故发生…

Paint 学习笔记

目录 ippaint 外扩对象 LCM_inpaint_Outpaint_Comfy&#xff1a; 不支持文字引导 ippaint https://github.com/Sanster/IOPaint 外扩对象 https://www.iopaint.com/models/diffusion/powerpaint_v2 GitHub - open-mmlab/PowerPaint: [ECCV 2024] PowerPaint, a versatile …

MyBatis-数据库连接池、属性文件config.properties、类名简化、MyBatis的整体架构

一、数据库连接池 1、概述 存储实现创建好的连接对象的容器 2、优点 避免了频繁创建和销毁连接对象 3、使用 在使用到连接对象时可在数据库连接池中直接获取 4、实现 不需要我们去实现,框架和一些第三方有现成的组件&#xff08;C3P0、ADCP、德鲁伊(阿里巴巴)&#xff…