【大数据技术基础】 课程 第8章 数据仓库Hive的安装和使用 大数据基础编程、实验和案例教程(第2版)

server/2024/11/24 10:00:30/

第8章 数据仓库Hive的安装和使用

8.1 Hive的安装

8.1.1 下载安装文件

访问Hive官网(http://www.apache.org/dyn/closer.cgi/hive/)下载安装文件apache-hive-3.1.2-bin.tar.gz

下载完安装文件以后,需要对文件进行解压。按照Linux系统使用的默认规范,用户安装的软件一般都是存放在“/usr/local/”目录下。请在Linux系统中打开一个终端,执行如下命令:

sudo tar -zxvf ./apache-hive-3.1.2-bin.tar.gz -C /usr/local   # 解压到/usr/local中
cd /usr/local/
sudo mv apache-hive-3.1.2-bin hive       # 将文件夹名改为hive
sudo chown -R hadoop:hadoop hive          # 修改文件权限

8.1.2 配置环境变量

为了方便使用,可以把hive命令加入到环境变量PATH中,从而可以在任意目录下直接使用hive命令启动,请使用vim编辑器打开“~/.bashrc”文件进行编辑,命令如下:

vim ~/.bashrc

在该文件的最前面一行添加如下内容:

export HIVE_HOME=/usr/local/hive
export PATH=$PATH:$HIVE_HOME/bin

 保存该文件并退出vim编辑器,然后,运行如下命令使得配置立即生效:

source ~/.bashrc

8.1.3 修改配置文件

将“/usr/local/hive/conf”目录下的hive-default.xml.template文件重命名为hive-default.xml,命令如下:

cd /usr/local/hive/conf
sudo mv hive-default.xml.template hive-default.xml

 同时,使用vim编辑器新建一个文件hive-site.xml,命令如下:

cd /usr/local/hive/conf
vim hive-site.xml

hive-site.xml中输入如下配置信息:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>javax.jdo.option.ConnectionURL</name><value>jdbc:mysql://localhost:3306/hive?createDatabaseIfNotExist=true</value><description>JDBC connect string for a JDBC metastore</description></property><property><name>javax.jdo.option.ConnectionDriverName</name><value>com.mysql.jdbc.Driver</value><description>Driver class name for a JDBC metastore</description></property><property><name>javax.jdo.option.ConnectionUserName</name><value>hive</value><description>username to use against metastore database</description></property><property><name>javax.jdo.option.ConnectionPassword</name><value>hive</value><description>password to use against metastore database</description></property>
</configuration>

8.1.4 安装并配置MySQL

1. 安装MySQL

        这里采用MySQL数据库保存Hive的元数据,而不是采用Hive自带的derby来存储元数据,因此,需要安装MySQL数据库。可以参照“附录B:Linux系统中的MySQL安装及常用操作”,完成MySQL数据库的安装,这里不再赘述。

2. 下载MySQL JDBC驱动程序

为了让Hive能够连接到MySQL数据库,需要下载MySQL JDBC驱动程序。可以到MySQL官网(http://www.mysql.com/downloads/connector/j/)下载mysql-connector-java-5.1.40.tar.gz。

在Linux系统中打开一个终端,在终端中执行如下命令解压缩文件:

cd ~
tar -zxvf mysql-connector-java-5.1.40.tar.gz   #解压

下面将mysql-connector-java-5.1.40-bin.jar拷贝到/usr/local/hive/lib目录下

cp mysql-connector-java-5.1.40/mysql-connector-java-5.1.40-bin.jar  /usr/local/hive/lib

3. 启动MySQL

执行如下命令启动MySQL,并进入“mysql>”命令提示符状态:

service mysql start  #启动MySQL服务
mysql -u root -p   #登录MySQL数据库

4. 在MySQL中为Hive新建数据库

        现在,需要在MySQL数据库中新建一个名称为hive的数据库,用来保存Hive的元数据。MySQL中的这个hive数据库,是与Hive的配置文件hive-site.xml中的“mysql://localhost:3306/hive”对应起来的,用来保存Hive元数据。在MySQL数据库中新建hive数据库的命令,需要在“mysql>”命令提示符下执行,具体如下:

create database hive;

5. 配置MySQL允许Hive接入

需要对MySQL进行权限配置,允许Hive连接到MySQL。

grant all on *.* to hive@localhost identified by 'hive'; 
flush privileges; 

6. 启动Hive

Hive是基于Hadoop的数据仓库,会把用户输入的查询语句自动转换成为MapReduce任务来执行,并把结果返回给用户。因此,启动Hive之前,需要先启动Hadoop集群,命令如下:

cd /usr/local/hadoop
./sbin/start-dfs.sh

 然后,再执行如下命令启动Hive:

cd /usr/local/hive
./bin/hive

8.2 Hive的数据类型

Hive的基本数据类型

类型

描述

示例

TINYINT

1个字节(8位)有符号整数

1

SMALLINT

2个字节(16位)有符号整数

1

INT

4个字节(32位)有符号整数

1

BIGINT

8个字节(64位)有符号整数

1

FLOAT

4个字节(32位)单精度浮点数

1.0

DOUBLE

8个字节(64位)双精度浮点数

1.0

BOOLEAN

布尔类型,true/false

true

STRING

字符串,可以指定字符集

xmu

TIMESTAMP

整数、浮点数或者字符串

1327882394Unix新纪元秒)

BINARY

字节数组

[0,1,0,1,0,1,0,1]

 Hive的集合数据类型

8.3 Hive基本操作

8.3.1 创建数据库、表、视图

1. 创建数据库

创建数据库hive

hive> create database hive;

创建数据库hive,因为hive已经存在,所以会抛出异常,加上if not exists关键字,则不会抛出异常

hive> create database if not exists hive;

2. 创建表

hive数据库中,创建表usr,含三个属性id,name,age

       hive> use hive;

       hive>create table if not exists usr(id bigint,name string,age int);

hive数据库中,创建表usr,含三个属性id,name,age,存储路径为“/usr/local/hive/warehouse/hive/usr”

       hive>create table if not exists hive.usr(id bigint,name string,age int)

              >location ‘/usr/local/hive/warehouse/hive/usr’;

hive数据库中,创建外部表usr,含三个属性id,name,age,可以读取路径“/usr/local/data”下以“,”分隔的数据。

       hive>create external table if not exists hive.usr(id bigint,name string,age int)

              >row format delimited fields terminated by ','

                location ‘/usr/local/data’;

hive数据库中,创建分区表usr,含三个属性id,name,age,还存在分区字段sex。

       hive>create table hive.usr(id bigint,name string,age int) partition by(sex boolean);

hive数据库中,创建分区表usr1,它通过复制表usr得到。

       hive> use hive;

       hive>create table if not exists usr1 like usr;

3. 创建视图

创建视图little_usr,只包含usr表中id,age属性

hive>create view little_usr as select id,age from usr;

8.3.2 删除数据库、表、视图

删除数据库

删除数据库hive,如果不存在会出现警告

      hive> drop database hive;

删除数据库hive,因为有if exists关键字,即使不存在也不会抛出异常

      hive>drop database if not exists hive;

删除数据库hive,加上cascade关键字,可以删除当前数据库和该数据库中的表

       hive> drop database if not exists hive cascade;

删除表

删除表usr,如果是内部表,元数据和实际数据都会被删除;如果是外部表,只删除元数据,不删除实际数据

      hive> drop table if exists usr;

删除视图

删除视图little_usr

      hive> drop view if exists little_usr;

8.3.3 修改数据库、表、视图

修改数据库

hive数据库设置dbproperties键值对属性值来描述数据库属性信息

      hive> alter database hive set dbproperties(‘edited-by’=’lily’);

修改表

重命名表usr为user

      hive> alter table usr rename to user;

为表usr增加新分区

      hive> alter table usr add if not exists partition(age=10);

删除表usr中分区

     hive> alter table usr drop if exists partition(age=10);

把表usr中列名name修改为username,并把该列置于age列后

      hive>alter table usr change name username string after age;

在对表usr分区字段之前,增加一个新列sex

     hive>alter table usr add columns(sex boolean);

删除表usr中所有字段并重新指定新字段newid,newname,newage

     hive>alter table usr replace columns(newid bigint,newname string,newage int);

为usr表设置tblproperties键值对属性值来描述表的属性信息

      hive> alter table usr set tabproperties(‘notes’=’the columns in usr may be null except id’);

修改视图

修改little_usr视图元数据中的tblproperties属性信息

     hive> alter view little_usr set tabproperties(‘create_at’=’refer to timestamp’);

8.3.4 查看数据库、表、视图

查看数据库

查看Hive中包含的所有数据库

      hive> show databases;

查看Hive中以h开头的所有数据库

      hive>show databases like ‘h.*’;

查看表和视图

查看数据库hive中所有表和视图

      hive> use hive;

      hive> show tables;

查看数据库hive中以u开头的所有表和视图

      hive> show tables in hive like ‘u.*’;

8.3.5 描述数据库、表、视图

描述数据库

查看数据库hive的基本信息,包括数据库中文件位置信息等

      hive> describe database hive;

查看数据库hive的详细信息,包括数据库的基本信息及属性信息等

      hive>describe database extended hive;

描述表和视图

查看表usr和视图little_usr的基本信息,包括列信息等

hive> describe hive.usr/ hive.little_usr;

查看表usr和视图little_usr的详细信息,包括列信息、位置信息、属性信息等

hive> describe extended hive.usr/ hive.little_usr;

查看表usr中列id的信息

hive> describe extended hive.usr.id;

8.3.6 向表中装载数据

把目录’/usr/local/data‘下的数据文件中的数据装载进usr表并覆盖原有数据

      hive> load data local inpath ‘/usr/local/data’ overwrite into table usr;

把目录’/usr/local/data‘下的数据文件中的数据装载进usr表不覆盖原有数据

      hive> load data local inpath ‘/usr/local/data’ into table usr;

把分布式文件系统目录’hdfs://master_srever/usr/local/data‘下的数据文件数据装载进usr表并覆盖原有数据

      hive> load data inpath ‘hdfs://master_srever/usr/local/data’

            >overwrite into   table usr;

8.3.7 查询表中数据

该命令和SQL语句完全相同这里不再赘述。

8.3.8 向表中插入数据或从表中导出数据

向表usr1中插入来自usr表的数据并覆盖原有数据

      hive> insert overwrite table usr1

            > select * from usr where age=10;

向表usr1中插入来自usr表的数据并追加在原有数据后

      hive> insert into table usr1

            > select * from usr

            > where age=10;

8.4 Hive应用实例:WordCount

    现在我们通过一个实例——词频统计,来深入学习一下Hive的具体使用。首先,需要创建一个需要分析的输入数据文件,然后编写HiveQL语句实现WordCount算法,在Unix下实现步骤如下:

(1)创建input目录,其中input为输入目录。命令如下:

cd /usr/local/hadoopmkdir input

(2)在input文件夹中创建两个测试文件file1.txt和file2.txt,命令如下:

cd  /usr/local/hadoop/inputecho "hello world" > file1.txtecho "hello hadoop" > file2.txt

(3)进入hive命令行界面,编写HiveQL语句实现WordCount算法,命令如下:

  hive

  hive> create table docs(line string);

  hive> load data inpath 'input' overwrite into table docs;

  hive>create table word_count as

      select word, count(1) as count from

      (select explode(split(line,' '))as word from docs) w

      group by word

      order by word;

执行完成后,用select语句查看运行结果如下:

8.5 Hive编程的优势

        词频统计算法是最能体现MapReduce思想的算法之一,接下来,我们将比较WordCount算法在MapReduce中的编程实现和Hive中编程实现的主要不同点:

1.  采用Hive实现WordCount算法需要编写较少的代码量

        在MapReduce中,wordcount类由63行Java代码编写而成代码位置:%HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar;

而在Hive中只需要编写7行代码

2.  在MapReduce的实现中,需要进行编译生成jar文件来执行算法,而在Hive中不需要。

        HiveQL语句的最终实现需要转换为MapReduce任务来执行,这都是由Hive框架自动完成的,用户不需要了解具体实现细节。

8.6 本章小结

        Hive是一个构建于Hadoop顶层的数据仓库工具,主要用于对存储在 Hadoop 文件中的数据集进行数据整理、特殊查询和分析处理。Hive在某种程度上可以看作是用户编程接口,本身不存储和处理数据,依赖HDFS存储数据,依赖MapReduce处理数据。

        本章介绍了Hive的安装方法,包括下载安装文件、配置环境变量、修改配置文件、安装并配置MySQL等。Hive支持关系数据库中的大多数基本数据类型,同时Hive还支持关系数据库中不常出现的的3种集合数据类型。Hive提供了类似SQL的语句——HiveQL,可以很方便地对Hive进行操作,包括创建、修改、删除数据库、表、视图等。Hive的一大突出优点是,可以把查询语句自动转化成相应的MapReduce任务去执行得到结果,这样就可以大大节省用户的编程工作量,本章最后通过一个WordCount应用实例,充分展示了Hive的这一优点。


http://www.ppmy.cn/server/144505.html

相关文章

(超级详细!!!)解决“com.mysql.jdbc.Driver is deprecated”警告:详解与优化

目录 引言 1. 问题分析 1.1 警告内容解析 1.2 产生原因 2. 解决方案 2.1 更新驱动类 2.2 更新 JDBC URL 2.3 升级 MySQL Connector/J 依赖 2.4 清理缓存和重建项目 3. 示例代码 4. 注意事项 总结 引言 在使用 MySQL 数据库时&#xff0c;许多开发者会遇到以下警告&…

生成式语言模型 三范式 预训练、微调、强化反馈学习

ChatGPT 是一种典型的大语言模型&#xff0c;其训练过程可以分为预训练、微调和**强化学习&#xff08;RLHF&#xff09;**这三个主要阶段。以下是对这些阶段的详细讲解&#xff1a; 1. 预训练&#xff08;Pretraining&#xff09; 目标&#xff1a;让模型掌握基本的语言理解与…

用nextjs开发时遇到的问题

这几天已经基本把node后端的接口全部写完了&#xff0c;在前端开发时考虑时博客视频类型&#xff0c;考虑了ssr&#xff0c;于是选用了nextJs&#xff0c;用的是nextUi,tailwincss,目前碰到两个比较难受的事情。 1.nextUI个别组件无法在服务器段渲染 目前简单的解决方法&…

自动驾驶系列—告别眩光烦恼:智能大灯如何守护夜间行车安全

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…

企业OA管理系统:Spring Boot技术实践与案例分析

3系统分析 3.1可行性分析 通过对本企业OA管理系统实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本企业OA管理系统采用SSM框架&#xff0c;JAVA作为开发语言&a…

如何给 Apache 新站点目录配置 SELinux ?

在 web 服务器管理领域&#xff0c;确保服务器环境的安全性至关重要。SELinux (Security-Enhanced Linux) 是保护 Linux 服务器最有效的工具之一&#xff0c;它是一种强制访问控制 (MAC mandatory access control) 安全机制。当使用最流行的 web 服务器 Apache 提供 web 内容时…

算法的时间复杂度

1.算法的复杂度 算法在编写为可执行程序后&#xff0c;运行需要耗费时间资源和空间资源。所以衡量一个算法的好坏&#xff0c;一般都是从时间和空间两个维度来衡量的。 而时间复杂度主要是衡量算法的运行快慢的&#xff0c;空间复杂度则是衡量算法运行所需的空间。 所以本篇文章…

嵌入式C语言面试题 - 2024/11/18

欢迎找我进行职业规划&#xff0c;超值的自我投资 -> 嵌入式软件工程师一对一指导 转载请注明来源&#xff1a; 下边代码&#xff0c;x值是&#xff1f; int x10;x 3x%(3); 解析&#xff1a; 初始值&#xff1a;x 10 计算 x % 3&#xff1a; 10 % 3 的结果是 1&#…