环形缓冲区

server/2024/11/24 5:21:41/

什么是环形缓冲区

环形缓冲区,也称为循环缓冲区或环形队列,是一种特殊的FIFO(先进先出)数据结构。它使用一块固定大小的内存空间来缓存数据,并通过两个指针(读指针和写指针)来管理数据的读写。当任意一个指针到达缓冲区末尾时,会自动回绕到缓冲区开头,形成一个"环"。

环形缓冲区的用途

  1. 串口通信
    在嵌入式设备中,串口是常用的通信接口。环形缓冲区可用于缓存收发数据,平衡通信速率差异。
  2. 音视频数据处理
    音视频数据往往是连续的数据流。使用环形缓冲区可以平滑数据的生成和消耗,避免数据丢失或延迟。
  3. 传感器数据采集
    传感器数据通常以固定频率采样。环形缓冲区可作为数据采集和处理之间的缓冲,降低实时性要求。
  4. 多线程数据传递
    在多线程编程中,环形缓冲区是一种简单高效的线程间通信方式,无需复杂的同步操作。
  5. 数据打包与解析
    一些通信协议使用特定的数据帧格式。环形缓冲区可用于数据的打包和解析,保证数据的完整性。

环形缓冲区的实现示例

#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>// 环形缓冲区大小
#define BUFFER_SIZE 256// 定义解析器状态
typedef enum {STATE_WAIT_START,    // 等待消息开始STATE_READ_LENGTH,   // 读取消息长度STATE_READ_DATA      // 读取消息数据
} ParserState;typedef struct {uint8_t buffer[BUFFER_SIZE];volatile uint16_t head;volatile uint16_t tail;
} RingBuffer;void RingBuffer_Init(RingBuffer *rb) {rb->head = 0;rb->tail = 0;
}bool RingBuffer_Write(RingBuffer *rb, uint8_t data) {uint16_t next = (rb->head + 1) % BUFFER_SIZE;if (next == rb->tail) {// 缓冲区满return false;}rb->buffer[rb->head] = data;rb->head = next;return true;
}bool RingBuffer_Read(RingBuffer *rb, uint8_t *data) {if (rb->head == rb->tail) {// 判满return false;}*data = rb->buffer[rb->tail];rb->tail = (rb->tail + 1) % BUFFER_SIZE;return true;
}// 处理完整消息的函数
void process_message(const uint8_t *msg, uint8_t length) {for (uint8_t i = 0; i < length; i++) {printf("%c", msg[i]);}printf("\n");
}// 有限状态机解析器
void parse_messages(RingBuffer *rb) {static ParserState state = STATE_WAIT_START;static uint8_t msg_length = 0;static uint8_t msg_index = 0;static uint8_t message[128]; //uint8_t byte;while (RingBuffer_Read(rb, &byte)) {switch (state) {case STATE_WAIT_START:  // 等待消息起始if (byte == 0xAA) { // 0xAA是消息起始标志state = STATE_READ_LENGTH;}break;case STATE_READ_LENGTH:  // 读取消息长度msg_length = byte;if (msg_length > 0 && msg_length < sizeof(message)) {msg_index = 0;state = STATE_READ_DATA;} else {// 无效长度,重置状态state = STATE_WAIT_START;}break;case STATE_READ_DATA:  // 读取消息数据message[msg_index++] = byte;if (msg_index >= msg_length) {process_message(message, msg_length);state = STATE_WAIT_START;}break;default:state = STATE_WAIT_START;break;}}
}// 发送函数
void threadA_send(RingBuffer *rb, const uint8_t *msg, uint8_t length) {RingBuffer_Write(rb, 0xAA); // 起始标志RingBuffer_Write(rb, length); // 长度字段for (uint8_t i = 0; i < length; i++) {RingBuffer_Write(rb, msg[i]);}
}// 接收函数
void threadB_receive(RingBuffer *rb) {parse_messages(rb);
}void test_ring_buffer(void) {// 1. 初始化环形缓冲区RingBuffer rb;RingBuffer_Init(&rb);printf("=== 环形缓冲区测试开始 ===\n\n");// 2. 测试基本消息发送和接收printf("测试1: 基本消息收发\n");const uint8_t test_msg1[] = "Hello World";threadA_send(&rb, test_msg1, sizeof(test_msg1) - 1);threadB_receive(&rb);// 3. 测试空缓冲区printf("\n测试2: 空缓冲区读取\n");uint8_t temp;if (!RingBuffer_Read(&rb, &temp)) {printf("空缓冲区测试通过: 无法从空缓冲区读取数据\n");}// 4. 测试缓冲区满状态printf("\n测试3: 缓冲区满状态\n");uint8_t large_msg[BUFFER_SIZE];for (int i = 0; i < BUFFER_SIZE; i++) {large_msg[i] = 'A' + (i % 26);  // 填充A-Z循环}bool write_result = true;int write_count = 0;while (write_result && write_count < BUFFER_SIZE + 10) {write_result = RingBuffer_Write(&rb, large_msg[write_count % BUFFER_SIZE]);write_count++;}printf("写入计数: %d (应小于缓冲区大小)\n", write_count - 1);// 5. 测试长消息分段发送printf("\n测试4: 长消息分段发送\n");RingBuffer_Init(&rb);  // 重新初始化const uint8_t long_msg[] = "This is a long message to test multiple segments";const int SEGMENT_SIZE = 10;for (size_t i = 0; i < (size_t)(sizeof(long_msg) - 1); i += (size_t)SEGMENT_SIZE) {size_t current_length = ((sizeof(long_msg) - 1 - i) < (size_t)SEGMENT_SIZE) ? (sizeof(long_msg) - 1 - i) : (size_t)SEGMENT_SIZE;threadA_send(&rb, &long_msg[i], current_length);threadB_receive(&rb);}// 6. 测试无效消息printf("\n测试5: 无效消息处理\n");uint8_t invalid_msg[] = {0xAA, 0xFF, 0x01, 0x02};  // 无效长度for (size_t i = 0; i < sizeof(invalid_msg); i++) {RingBuffer_Write(&rb, invalid_msg[i]);}threadB_receive(&rb);// 7. 测试快速读写切换printf("\n测试6: 快速读写切换\n");const uint8_t test_msg2[] = "Test";for (int i = 0; i < 5; i++) {threadA_send(&rb, test_msg2, sizeof(test_msg2) - 1);threadB_receive(&rb);}printf("\n=== 环形缓冲区测试完成 ===\n");
}int main() {test_ring_buffer();return 0;
}

总结

与传统的数组或链表相比,环形缓冲区有以下优点:
1.无需频繁移动数据。环形缓冲区的读写指针移动不会导致数据搬移,效率更高。
2.自动处理缓冲区"满"和"空"的状态。通过读写指针的关系可以判断缓冲区状态,无需额外的计数器。
3. 适用于生产者-消费者模型。一个线程写入数据,另一个线程读取数据,天然支持异步处理。


http://www.ppmy.cn/server/144451.html

相关文章

Windows Pycharm 远程 Spark 开发 PySpark

一、环境版本 环境版本PyCharm2024.1.2 (Professional Edition)Ubuntu Kylin16.04Hadoop3.3.5Hive3.1.3Spark2.4.0 二、Pycharm远程开发 文件-远程-开发 选择 SSH连接&#xff0c;连接虚拟机&#xff0c;选择项目目录即可远程开发

第1章 初识SpringMVC

第一章 初识SpringMVC 1.1 什么是MVC MVC是一种软件架构模式&#xff08;是一种软件架构设计思想&#xff0c;不止Java开发中用到&#xff0c;其它语言也需要用到&#xff09;&#xff0c;它将应用分为三块&#xff1a; M&#xff1a;Model&#xff08;模型&#xff09;V&am…

leetcode2650. 设计可取消函数 generator和Promise

题目描述&#xff1a; 有时候你会有一个长时间运行的任务&#xff0c;并且你可能希望在它完成之前取消它。为了实现这个目标&#xff0c;请你编写一个名为 cancellable 的函数&#xff0c;它接收一个生成器对象&#xff0c;并返回一个包含两个值的数组&#xff1a;一个 取消函…

.net 7.0 解决“The keyword field is required”的问题

在 .net 3.1项目的时候&#xff0c;使用 keyword 做 API 接口的模糊匹配&#xff0c;能够传入keyword “” 进行整表查询。但当我在 .net 7.0 项目中这么使用的时候&#xff0c;传入 keyword 不为空时能够进行匹配&#xff0c;但是当我传入 keyword “” 的时候就报错 “The …

Consumer Group

不&#xff0c;kafka-consumer-groups.sh 脚本本身并不用于创建 Consumer Group。它主要用于管理和查看 Consumer Group 的状态和详情&#xff0c;比如列出所有的 Consumer Group、查看特定 Consumer Group 的详情、删除 Consumer Group 等。 Consumer Group 是由 Kafka 消费者…

Nexus搭建go私有仓库,加速下载go依赖包

一、搭建go私库 本文我们梳理一下go依赖包的私库搭建以及使用。 它只分为proxy和group两种仓库&#xff0c;这一点和maven仓库有所不同。 1、创建Blob Stores 为了区分不同的私库依赖包&#xff0c;存储的位置分隔开。 2、新建go proxy官网 Remote storage&#xff1a;htt…

集群聊天服务器(13)redis环境安装和发布订阅命令

目录 环境安装订阅redis发布-订阅的客户端编程环境配置客户端编程 功能测试 环境安装 sudo apt-get install redis-server 先启动redis服务 /etc/init.d/redis-server start默认在6379端口上 redis是存键值对的&#xff0c;还可以存链表、数组等等复杂数据结构 而且数据是在…

数造科技亮相第26届高交会并接受媒体采访,以数据智能赋能未来

11 月 14 日至 16 日&#xff0c;第二十六届中国国际高新技术成果交易会&#xff08;简称“高交会”&#xff09;在深圳成功举办。本届大会以“科技引领发展&#xff0c;产业融合聚变”为主题&#xff0c;汇聚了全球最新的科技成果&#xff0c;打造了一场科技界的盛大聚会。 在…