基于 NCD 与优化函数结合的非线性优化 PID 控制

server/2024/11/23 21:18:30/

基于 NCD 与优化函数结合的非线性优化 PID 控制


1. 引言

NCD(Normalized Coprime Factorization Distance)优化是一种用于非线性系统的先进控制方法。通过将 NCD 指标与优化算法结合,可以在动态调整控制参数的同时优化控制器性能。此方法特别适合非线性和复杂系统,解决传统 PID 控制在强耦合、非线性环境下的适应性不足问题。


2. 控制方法框架
2.1 基本思想
  • 目标
    最小化系统的 NCD 指标,优化 PID 控制器性能。

  • 核心思想
    利用优化算法(如梯度下降、遗传算法或粒子群算法)对 PID 参数 Kp,Ki,Kd进行实时调整,使得系统误差和扰动的影响最小化。

3. 系统框图

控制系统包括以下模块:

  1. PID 控制器:提供初始控制信号。
  2. 非线性被控对象:复杂动态系统。
  3. NCD 指标计算器:实时计算系统性能指标。
  4. 优化模块:基于优化算法调整 PID 参数。

5. C++ 实现

以下为基于 C++ 的优化 PID 控制代码示例。

5.1 PID 控制器
class PIDController {
public:double Kp, Ki, Kd; // PID 参数double Ts;         // 采样周期double integral, prevError; // 积分项和前次误差PIDController(double kp, double ki, double kd, double ts): Kp(kp), Ki(ki), Kd(kd), Ts(ts), integral(0.0), prevError(0.0) {}double compute(double error) {integral += error * Ts;double derivative = (error - prevError) / Ts;prevError = error;return Kp * error + Ki * integral + Kd * derivative;}
};

5.2 NCD 指标计算

double computeNCD(double Tw, double Sw) {return sqrt(Tw * Tw + Sw * Sw);
}

5.3 优化算法(梯度下降

class Optimizer {
public:double learningRate;Optimizer(double lr) : learningRate(lr) {}void updateParameters(double& Kp, double& Ki, double& Kd,double dJ_dKp, double dJ_dKi, double dJ_dKd) {Kp -= learningRate * dJ_dKp;Ki -= learningRate * dJ_dKi;Kd -= learningRate * dJ_dKd;}
};

5.4 主程序

int main() {// 初始化 PID 控制器和优化器double Ts = 0.01;PIDController pid(1.0, 0.5, 0.1, Ts);Optimizer optimizer(0.01);// 初始参数double Tw = 0.0, Sw = 0.0, e = 0.0; // 传递函数、灵敏度函数、误差double Kp = 1.0, Ki = 0.5, Kd = 0.1;for (int iter = 0; iter < 100; ++iter) {// 模拟系统响应,更新 Tw 和 SwTw = 1.0; // 示例值(需通过模型计算)Sw = 0.5; // 示例值(需通过模型计算)e = 0.1;  // 示例误差// 计算目标函数double J = computeNCD(Tw, Sw) + e * e;// 梯度计算(这里用伪梯度作为示例)double dJ_dKp = 0.01 * Kp; // 示例值double dJ_dKi = 0.01 * Ki; // 示例值double dJ_dKd = 0.01 * Kd; // 示例值// 更新 PID 参数optimizer.updateParameters(Kp, Ki, Kd, dJ_dKp, dJ_dKi, dJ_dKd);// 打印迭代信息std::cout << "Iter: " << iter << ", J: " << J<< ", Kp: " << Kp << ", Ki: " << Ki << ", Kd: " << Kd << std::endl;}return 0;
}
6. 特点与优势
  1. 动态优化: 实现了基于系统实时性能的动态优化,适应非线性环境。

  2. 自适应性: PID 参数实时调整,适应系统动态特性变化。

  3. 鲁棒性: 通过 NCD 指标约束,提高了系统的抗干扰能力。

  4. 通用性: 可结合遗传算法、粒子群优化等优化方法,适应不同场景需求。


7. 应用场景
  • 复杂非线性系统控制:如化工过程控制、非线性伺服控制。
  • 机器人控制:多自由度运动控制。
  • 自动化工业控制:多变量耦合系统优化。
  • 智能交通:非线性动力学建模与控制。

8. 总结

基于 NCD 与优化函数结合的非线性优化 PID 控制方法,结合了经典控制与现代优化技术的优点,适合在非线性、动态复杂的系统中实现高性能控制。未来可以扩展到多变量控制、分布式控制等领域,进一步提升系统效率与稳定性。


http://www.ppmy.cn/server/144355.html

相关文章

Applied Intelligence投稿

一、关于手稿格式&#xff1a; 1、该期刊是一个二区的&#xff0c;模板使用Springer nature格式&#xff0c; 期刊投稿要求&#xff0c;详细期刊投稿指南&#xff0c;大部分按Soringernature模板即可&#xff0c;图片表格声明参考文献命名要求需注意。 2、参考文献&#xff…

自动驾驶系列—探索自动驾驶数据管理的核心技术与平台

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…

Kotlin return与return@forEachIndexed

Kotlin return与returnforEachIndexed fun main() {val data arrayOf(0, 1, 2, 3, 4)println("a")data.forEachIndexed { index, v ->if (v 2) {//类似while循环中的continue//跳过&#xff0c;继续下一个forEachIndexed迭代returnforEachIndexed}println("…

【手写一个spring】spring源码的简单实现--初始化机制,回调机制

文章目录 A. 初始化机制实现初始化机制的方法1.实现InitializingBean接口 B. 回调机制(Aware)初始化机制和回调机制之间的区别 A. 初始化机制 在Spring框架中&#xff0c;初始化机制是Bean生命周期管理的一个重要组成部分。它确保了Bean在创建和依赖注入完成后&#xff0c;能够…

C语言中的结构体,指针,联合体的使用

目录 1. 概述2. 定义和初始化3. 成员的使用4. 结构体数组5. 结构体套结构体6. 结构体赋值7. 结构体和指针8. 结构体作为函数参数9. 共用体&#xff08;联合体&#xff09;10. typedef就是取别名总结 1. 概述 数组&#xff1a;连续的相同数据类型的集合 结构体&#xff1a;不同…

第十章综合案例——————轮播广告

代码如下&#xff1a; <!DOCTYPE html> <html><head><meta charset"utf-8"><title>图片轮播效果</title><style type"text/css">*{margin: 0;padding: 0;text-decoration: none;}body{padding: 20px;}#contain…

网络安全之接入控制

身份鉴别 ​ 定义:验证主题真实身份与其所声称的身份是否符合的过程&#xff0c;主体可以是用户、进程、主机。同时也可实现防重放&#xff0c;防假冒。 ​ 分类:单向鉴别、双向鉴别、三向鉴别。 ​ 主题身份标识信息:密钥、用户名和口令、证书和私钥 Internet接入控制过程 …

全面解析 JMeter 后置处理器:概念、工作原理与应用场景

在性能测试中&#xff0c;Apache JMeter是一个非常流行的工具&#xff0c;它不仅能够模拟大量用户进行并发访问&#xff0c;还提供了丰富的扩展机制来满足各种复杂的测试需求。后置处理器&#xff08;Post-Processor&#xff09;是JMeter中非常重要的组件之一&#xff0c;用于在…