C语言中的结构体,指针,联合体的使用

server/2024/11/23 20:54:28/

目录

  • 1. 概述
  • 2. 定义和初始化
  • 3. 成员的使用
  • 4. 结构体数组
  • 5. 结构体套结构体
  • 6. 结构体赋值
  • 7. 结构体和指针
  • 8. 结构体作为函数参数
  • 9. 共用体(联合体)
  • 10. typedef就是取别名
  • 总结

1. 概述

数组:连续的相同数据类型的集合
结构体:不同数据类型的集合

2. 定义和初始化

  • 先声明结构体类型再定义变量名
  • 在声明类型的同时定义变量
  • 直接定义结果体类型变量(无类型名)
  1. 定义结构体类型,再使用该类型定义变量
struct stu {char name[20];int age;
};
struct stu s1 = { "lily", 20 };
  1. 定义结构体类型同时定义变量
struct stu2 {char name[20];int age;
} s2 = { "lily", 20 };
  1. 定义结构体变量,不定义类型
struct{char name[20];int age;
} s3 = { "lily", 20 };

3. 成员的使用

  1. 结构体.成员
  2. 结构体->成员
# include<stdio.h>
struct stu {char name[20];int age;
};int main() {struct stu s1 = { "lily", 20 };// 1. 通过点运算符访问s1变量的成员printf("名字是:%s\n", s1.name);// 修改strcpy(s1.name, "Jorry");printf("名字是:%s\n", s1.name);// 2. 通过->运算符访问结构体指针变量p的成员printf("(&s1)->name = %s, (&s1)-> age = %d\n", (&s1)->name, (&s1)->age);return 0;
}

4. 结构体数组

# include<stdio.h>
struct stu {char name[20];int age;
};int main() {struct stu s1[5] = { {"lily", 24 },{"lidaly", 205 },{"lidaly", 203 },{"lilsady", 230 },{"lily2", 22 } };for (int i = 0; i < 5; i++) {printf("输出%d个:---------\n", i);printf("名字是:%s, 年龄: %d\n", s1[i].name, s1[i].age);printf("名字是:%s, 年龄: %d\n", (*(s1+i)).name, s1[i].age);printf("名字是:%s, 年龄: %d\n", (s1 + i)->name, s1[i].age);}printf("-----------");return 0;
}

5. 结构体套结构体

# include<stdio.h>
struct stu {char name[20];int age;
};
struct teacher {int age;struct stu s;
};
int main() {// 这样子写也可以// struct teacher t[2] = { 40, "张三", 18, 42, "李四", 28};struct teacher t[2] = {{40, {"张三", 18}},{42, {"李四", 28}}};int i = 0;for (i = 0; i < 2; i++) {printf("老师[%d]的年龄: %d,学生名字:%s, 学生年龄: %d\n", i, t[i].age, t[i].s.name, t[i].s.age);}return 0;
}

6. 结构体赋值

// 有警告
#define _CRT_SECURE_NO_WARNINGS
# include<stdio.h>
#include <string.h>
#include <stdlib.h>
struct stu {char name[20];int age;
};
int main() {struct stu s;strcpy(s.name, "rose");s.age = 18;printf("名字是:%s, 年龄: %d\n", s.name, s.age);// 结构体赋值struct stu s2 = s;// 和拷贝一样memcpy(&s2, &s1, sizeof(s1))printf("名字是:%s, 年龄: %d\n", s2.name, s2.age);// 这是两个变量,可以输出地址查看printf("s的地址: %d, s2的地址: %d", &s, &s2);return 0;
}

7. 结构体和指针

  1. 普通结构体指针
  2. 指向堆区空间的结构体指针
  3. 结构体中套指针
#define _CRT_SECURE_NO_WARNINGS
# include<stdio.h>
#include <string.h>
#include <stdlib.h>
struct stu {char name[20];int age;
};
struct stu2 {char* name;int age;
};
int main() {// 1. 普通结构体指针struct stu s = { "milk", 23 };struct stu* p = &s;printf("1. \n");printf("名字是:%s, 年龄: %d\n", p->name, p->age);printf("名字是:%s, 年龄: %d\n", (*p).name, (*p).age);// 2. 指向堆区空间的结构体指针struct stu* p2 = (struct stu *)malloc(sizeof(struct stu));strcpy(p2->name, "rose9");p2->age = 27;printf("2. \n");printf("名字是:%s, 年龄: %d\n", p2->name, p2->age);printf("名字是:%s, 年龄: %d\n", (*p2).name, (*p2).age);// 3. 结构体中套指针struct stu2* p3 = (struct stu2*)malloc(sizeof(struct stu2));p3->name = (char*)malloc(strlen("jack") + 1);strcpy(p3->name, "rose");p3->age = 29;printf("3. \n");printf("名字是:%s, 年龄: %d\n", p3->name, p3->age);printf("名字是:%s, 年龄: %d\n", (*p3).name, (*p3).age);if (p3->name != NULL) {free(p3->name);p3->name = NULL;}if (p3 != NULL) {free(p3);p3 = NULL;}return 0;
}

8. 结构体作为函数参数

  1. 作为普通变量做函数参数
  2. 指针变量做函数参数
#define _CRT_SECURE_NO_WARNINGS
# include<stdio.h>
#include <string.h>
#include <stdlib.h>
void foo(struct stu tmp) {printf("名字是:%s, 年龄: %d\n", tmp.name, tmp.age);strcpy(tmp.name, "milk");printf("名字是:%s, 年龄: %d\n", tmp.name, tmp.age);
}void foo2(struct stu* tmp) {printf("名字是:%s, 年龄: %d\n", tmp->name, tmp->age);strcpy(tmp->name, "rose");tmp->age = 27;printf("名字是:%s, 年龄: %d\n", tmp->name, tmp->age);
}int main() {struct stu s = { "lily", 20 };foo(s);printf("名字是:%s, 年龄: %d\n", s.name, s.age);foo2(&s);printf("名字是:%s, 年龄: %d\n", s.name, s.age);return 0;
}

输出结果:

名字是:lily, 年龄: 20
名字是:milk, 年龄: 20
名字是:lily, 年龄: 20
名字是:lily, 年龄: 20
名字是:rose, 年龄: 27
名字是:rose, 年龄: 27

9. 共用体(联合体)

联合union是一个能在同一个存储空间存储不同类型数据的类型
联合体所占的内存长度等于其最长成员的长度倍数,也有叫做共用体

# include<stdio.h>
#include <string.h>
#include <stdlib.h>
struct stu {char name[20];int age;
};
union test {unsigned char a;unsigned int b;unsigned short c;};
int main() {union test tmp;// 1. 共用体中元素地址是一样的printf("&(tmp.a) = %p, &(tmp.b) = %p, &(tmp.c) = %p\n", &(tmp.a), &(tmp.b), &(tmp.c));//2. 共用体变量大小是最大元素大小pritf("sizeof(tmp) = %d\n", sizeof(tmp));// 3. 给其中一个赋值,会影响其他元素tmp.b = 0x44332211;printf("tmp.a = %x, tmp.b = %x, tmp.c = %x\n", tmp.a, tmp.b, tmp.c);tmp.a = 0x00;printf("tmp.a = %x, tmp.b = %x, tmp.c = %x\n", tmp.a, tmp.b, tmp.c);return 0;
}

输出结果:

&(tmp.a) = 000000378D8FF574, &(tmp.b) = 000000378D8FF574, &(tmp.c) = 000000378D8FF574
sizeof(tmp) = 4
tmp.a = 11, tmp.b = 44332211, tmp.c = 2211
tmp.a = 0, tmp.b = 44332200, tmp.c = 2200

10. typedef就是取别名

#define _CRT_SECURE_NO_WARNINGS
# include<stdio.h>
#include <string.h>
#include <stdlib.h>
#define TRUE 1
typedef struct test {int a;char b;short c;
}TEST, *PTEST;
int main() {printf("TRUE = %d\n", TRUE);TEST t1;t1.a = 10;t1.b = 'b';t1.c = 40;PTEST p = &t1;printf("p->a = %d, p->b = %c, p->c = %d\n", p->a, p->b, p->c);return 0;
}

输出结果:

TRUE = 1
p->a = 10, p->b = b, p->c = 40
typedef struct test {int a;char b;short c;
}*PTEST;
//相当于
typedef struct test {int a;char b;short c;
}* PTEST;
//给struct test {
//	int a;
//	char b;
//	short c;
//}*起名为PTEST

总结

结构体在 C 语言中非常有用,它可以帮助你更有效地组织和管理复杂的数据结构,适用于很多实际的编程场景,如数据库编程、图形编程等领域。
这部分很基础,也很有意思,后面的话,我考虑使用结构体进行一些操作,发一些博客。
这边博客仅仅是基础的使用,后面会尽量细一些,丰富一些。


http://www.ppmy.cn/server/144350.html

相关文章

第十章综合案例——————轮播广告

代码如下&#xff1a; <!DOCTYPE html> <html><head><meta charset"utf-8"><title>图片轮播效果</title><style type"text/css">*{margin: 0;padding: 0;text-decoration: none;}body{padding: 20px;}#contain…

网络安全之接入控制

身份鉴别 ​ 定义:验证主题真实身份与其所声称的身份是否符合的过程&#xff0c;主体可以是用户、进程、主机。同时也可实现防重放&#xff0c;防假冒。 ​ 分类:单向鉴别、双向鉴别、三向鉴别。 ​ 主题身份标识信息:密钥、用户名和口令、证书和私钥 Internet接入控制过程 …

全面解析 JMeter 后置处理器:概念、工作原理与应用场景

在性能测试中&#xff0c;Apache JMeter是一个非常流行的工具&#xff0c;它不仅能够模拟大量用户进行并发访问&#xff0c;还提供了丰富的扩展机制来满足各种复杂的测试需求。后置处理器&#xff08;Post-Processor&#xff09;是JMeter中非常重要的组件之一&#xff0c;用于在…

如何用AI写小说(二):Gradio 超简单的网页前端交互

上一篇写了基本的生成小说的脚本&#xff0c;但脚本终归是很丑的代码&#xff0c;不符合优雅的调性&#xff0c;在 huggingface 大家经常用一个叫 gradio 的东西来写交互&#xff0c;虽然我没有什么前端基础&#xff0c;但是这个gradio最大的特点就是简单&#xff01;简单&…

深入解析Kernel32.dll与Msvcrt.dll

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 介绍Kernel32.dll&#xff1a;Windows操作系统的核心Msvcrt.dll&#xff1a;C运行时库的核心 使用举例使用Kernel32.dll的示例&#xff1a;文件操作使用Msvcrt.dll的…

【ArcGISPro】地理配准-影像校正

由于大部分数据安全性&#xff0c;以下是随意下载的图片&#xff0c;仅展示配置操作 地图-地理配准 添加控制点 修改控制点 可以导入、导出、添加和删除控制点 保存 关闭地理配准

C#实现blob分析——分别基于OpenCvSharp和Emgu实现

需求和效果预览 对于下图&#xff0c;需要检测左右两侧是否断开&#xff1a; 解决分析 设置左右2个ROI区域&#xff0c;找到ROI内面积最大的连通域&#xff0c;通过面积阈值和连通域宽高比判定是否断开。 可能遇到的问题&#xff1a;部分区域反光严重&#xff0c;二值化阈值不…

11.19 机器学习-梯度下降

# **正规方程求解的缺点** # 最小二乘法的缺点 # 之前利用正规方程求解的W是最优解的原因是MSE这个损失函数是凸函数。 # 但是&#xff0c;机器学习的损失函数并非都是凸函数&#xff0c;设置导数为0会得到很多个极值&#xff0c;不能确定唯一解,MSE还有一个问题,当数据量和…