鸿蒙动画开发07——粒子动画

server/2024/11/23 19:45:39/

 

1、概 述

粒子动画是在一定范围内随机生成的大量粒子产生运动而组成的动画。

动画元素是一个个粒子,这些粒子可以是圆点、图片。我们可以通过对粒子在颜色、透明度、大小、速度、加速度、自旋角度等维度变化做动画,来营造一种氛围感,比如下雪的动效,雪花飘舞就相当于一个个雪花粒子在做动画。

粒子动画的效果通过Particle组件展现。

一个简单的粒子动画实例如下:

 

c6324eaed5ff085789aa3775df66e2fb.gif

代码如下:

@Entry@Componentstruct ParticleExample {  build() {    Stack() {      Text()        .width(300).height(300).backgroundColor(Color.Black)      Particle({ particles: [        {          emitter: {            particle: {              type: ParticleType.POINT, //粒子类型              config: {                radius: 5 //圆点半径              },              count: 100, //粒子总数            },          },        },      ]      }).width(250).height(250)    }.width("100%").height("100%").align(Alignment.Center)  }}

2、粒子发射器

粒子发射器(Particle Emitter)是粒子动画中用于生成和控制粒子的组件,主要用于定义粒子的初始属性(如类型、位置、颜色),控制粒子生成的速率,以及管理粒子的生命周期。

支持发射器位置动态更新。通过 emitter 方法调整粒子发射器的位置,发射速率和发射窗口的大小。

示例代码如下:

// ...@State emitterProperties: Array<EmitterProperty> = [  {    index: 0,    emitRate: 100,    position: { x: 60, y: 80 },    size: { width: 200, height: 200 }  }]
Particle(...).width(300).height(300).emitter(this.emitterProperties) // 动态调整粒子发射器的位置// ...

效果如下:

 

012fecd2b65c41c5b8efd1ad14519d1d.gif

3、控制粒子颜色

通过 DistributionType 设置粒子初始颜色随机值分布。可以设置为均匀分布或者高斯(正态)分布。实例代码如下:​​​​​​

// ...color: {  range: [Color.White, Color.Yellow], // 初始颜色范围  distributionType: DistributionType.GAUSSIAN // 初始颜色随机值分布},// ...

效果如下:

 

2bd5bc6fa1927fe791f3b4370969ead5.gif

4、粒子生命周期

粒子的生命周期(Lifecycle)是粒子从生成到消亡的过程,用于指定粒子的生存时长。

通过lifetime和lifetimeRange设置粒子生命周期。​​​​​​​

// ...emitter: {  particle: {    // ...    lifetime: 300, //粒子生命周期,单位ms    lifetimeRange: 100 //粒子生命周期取值范围,单位ms  },  emitRate: 10, //每秒发射粒子数  position: [0, 0],  shape: ParticleEmitterShape.RECTANGLE //发射器形状},color: {  range: [Color.White, Color.Yellow], // 初始颜色范围},// ...

5、添加扰动场

扰动场(Disturbance Field)是用来影响粒子运动的一种机制。扰动场通过在粒子所在空间区域中施加特定的力,来改变粒子的轨迹和行为,从而实现更复杂和自然的动画效果。

扰动场可以通过 disturbanceFields 方法进行配置。代码如下:​​​​​​​

// ...Particle({ particles: [  {    emitter: // ...    color: // ...    scale: {      range: [0.0, 0.0],      updater: {        type: ParticleUpdater.CURVE,        config: [          {            from: 0.0,            to: 0.5,            startMillis: 0,            endMillis: 3000,            curve: Curve.EaseIn          }        ]      }    },    acceleration: { //加速度的配置,从大小和方向两个维度变化,speed表示加速度大小,angle表示加速度方向      speed: {        range: [3, 9],        updater: {          type: ParticleUpdater.RANDOM,          config: [1, 20]        }      },      angle: {        range: [90, 90]      }    }
  }]}).width(300).height(300).disturbanceFields([{  strength: 10,  shape: DisturbanceFieldShape.RECT,  size: { width: 100, height: 100 },  position: { x: 100, y: 100 },  feather: 15,  noiseScale: 10,  noiseFrequency: 15,  noiseAmplitude: 5}])// ...

效果如下:

 

27cd334513b8ae710d343ec924a58218.gif

 


http://www.ppmy.cn/server/144336.html

相关文章

分布式锁RedissonClient应用

文章目录 一、RedissonClient 的由来二、RedissonClient 的优势三、RedissonClient 的应用场景四、实际应用4.1引入依赖4.2代码示例 一、RedissonClient 的由来 在分布式系统中&#xff0c;为了保证多个节点或进程对共享资源的并发访问的正确性和一致性&#xff0c;需要一种有效…

Python数据结构day2

一、链表 1.1目的 解决顺序表存储数据有上限&#xff0c;并且插入和删除操作效率低的问题 1.2概念 链表&#xff1a;链式存储的线性表&#xff0c;使用随机物理内存存储逻辑上连续的数据 链表的组成&#xff1a;由一个个结点组成 结点&#xff1a;由数据域和链接域组成&a…

macOS开发环境配置与应用开发指南

引言 在软件开发的世界里&#xff0c;macOS以其卓越的性能和稳定性赢得了开发者的青睐。macOS提供了一个强大的开发环境&#xff0c;支持从前端到后端、从桌面应用到移动应用的全栈开发。本文将为你提供一个全面的指南&#xff0c;帮助你在macOS上配置开发环境&#xff0c;并开…

Java解析视频FPS(帧率)、分辨率信息

以下分别介绍使用 Python 和 Java 解析视频的 FPS&#xff08;帧率&#xff09;和分辨率信息的方法&#xff1a; Java 解析视频 FPS 和分辨率信息 在 Java 中&#xff0c;可以使用Xuggle库来处理视频并获取相关信息&#xff0c;不过需要先添加相应的依赖到项目中&#xff08;…

shell脚本分析部署nginx网络服务

题目&#xff1a;通过shell脚本分析部署nginx网络服务 1.接收用户部署的服务名称 2.判断服务是否安装 已安装&#xff1b;自定义网站配置路径为/www&#xff1b;并创建共享目录和网页文件&#xff1b;重启服务 没有安装&#xff1b;安装对应的软件包 3.测试 判断服务是否成…

数据分析-51-时间序列分解之局部均值分解LMD

文章目录 1 时间序列模态分解1.1 模态分解的概念1.2 模态分解的作用1.3 常用的模态分解方法1.4 模态分解的常用库2 局部均值分解LMD2.1 LMD的流程2.2 加载数据集2.2.1 数据重采样2.2.2 原始数据可视化2.3 局部均值分解LMD3 参考附录1 时间序列模态分解 1.1 模态分解的概念 时…

基于 RBF 神经网络辨识的单神经元 PID 模型参考自适应控制

这是一个基于 RBF 神经网络辨识 和 单神经元 PID 模型参考自适应控制 的系统框图&#xff0c;包含以下主要部分&#xff1a; RBF 神经网络模块&#xff1a;用于对系统进行辨识&#xff0c;输入误差 e(t)e(t)e(t) 和误差变化量 Δe(t)\Delta e(t)Δe(t)&#xff0c;输出与系统特…

力扣——寻找峰值

题目 162. 寻找峰值 - 力扣&#xff08;LeetCode&#xff09; 思路 第一想法就是直接遍历&#xff0c;时间复杂度为O(n)&#xff0c;肯定超时了。 然后就想到用二分&#xff0c;但是数组又不一定是有序的。仔细一思考&#xff0c;好像也可以用&#xff0c;关键在于这个峰值…