基于 RBF 神经网络辨识的单神经元 PID 模型参考自适应控制

server/2024/11/23 19:14:17/

这是一个基于 RBF 神经网络辨识单神经元 PID 模型参考自适应控制 的系统框图,包含以下主要部分:

  1. RBF 神经网络模块:用于对系统进行辨识,输入误差 e(t)e(t)e(t) 和误差变化量 Δe(t)\Delta e(t)Δe(t),输出与系统特性相关的辨识结果,为控制器参数调整提供依据。
  2. 单神经元 PID 控制器:根据 RBF 神经网络的输出,自适应调整 PID 控制器的比例增益 KpK_pKp​、积分增益 KiK_iKi​、微分增益 KdK_dKd​。
  3. 参考模型:定义期望的系统响应行为,用于生成理想输出,作为实际输出的比较基准。
  4. 被控对象:受控的目标系统,接收控制信号后产生实际输出。
  5. 反馈回路:通过测量系统实际输出,与参考模型输出进行比较,计算误差 e(t)e(t)e(t) 和误差变化量 Δe(t)\Delta e(t)Δe(t),输入到神经网络和控制器中。

信号流动通过箭头清晰标识,框图清晰呈现了各模块间的关系以及信号处理过程,反映了系统的自适应调整机制和控制策略。

基于 RBF 神经网络辨识的单神经元 PID 模型参考自适应控制 是一种结合了 RBF(径向基函数)神经网络和单神经元自适应 PID 控制的方法。该方法通过神经网络进行系统辨识,利用辨识到的模型来调整 PID 控制器的参数。具体来说,RBF 神经网络根据误差和误差变化量的输入,学习并适应系统的动态特性,从而为 PID 控制器提供更准确的参数调整。

基本原理

  1. 系统辨识:首先,RBF 神经网络通过输入的误差和误差变化量来识别系统的动态特性。神经网络学习如何将误差和误差变化量映射到 PID 参数(比例增益 KpK_pKp​、积分增益 KiK_iKi​、微分增益 KdK_dKd​)上。

  2. PID 控制:基于 RBF 神经网络的辨识结果,PID 控制器动态调整增益 KpK_pKp​、KiK_iKi​、KdK_dKd​,使得系统能够快速、准确地响应目标。

  3. 参考自适应控制:该方法结合了参考模型来设计控制策略。通过引入参考模型,控制系统的目标是使实际系统的输出尽量接近参考模型的输出,从而达到期望的控制效果。

算法流程

  1. 误差计算:在每个控制周期,计算当前的误差 e(t)e(t)e(t) 和误差变化量 Δe(t)\Delta e(t)Δe(t)。

  2. RBF 神经网络训练:利用误差和误差变化量作为输入,RBF 神经网络通过训练优化权重,从而为 PID 控制器提供增益的调整值。

  3. PID 控制:根据神经网络计算出的 PID 增益调整量,更新 PID 控制器的增益。

  4. 控制信号计算:使用更新后的 PID 增益计算控制信号。

  5. 参考模型调整:通过与参考模型输出的对比,进行反馈调整,进一步优化 PID 参数,使实际输出更接近参考模型的期望输出。

C++ 实现(简化版)

#include <iostream>
#include <vector>
#include <cmath>class RBFNeuralNetwork {
private:int input_size, hidden_size, output_size;double learning_rate;std::vector<std::vector<double>> centers;   // RBF中心std::vector<double> sigma;                  // RBF的宽度std::vector<std::vector<double>> weights;   // 隐藏层到输出层的权重std::vector<double> output;                 // 神经网络输出public:RBFNeuralNetwork(int input_size, int hidden_size, int output_size, double learning_rate = 0.01): input_size(input_size), hidden_size(hidden_size), output_size(output_size), learning_rate(learning_rate) {centers.resize(hidden_size, std::vector<double>(input_size));sigma.resize(hidden_size);weights.resize(hidden_size, std::vector<double>(output_size));output.resize(output_size);// 随机初始化RBF中心和宽度for (int i = 0; i < hidden_size; ++i) {for (int j = 0; j < input_size; ++j) {centers[i][j] = (rand() % 1000) / 1000.0;  // 随机初始化中心}sigma[i] = (rand() % 1000) / 1000.0 + 0.5;  // 随机初始化宽度}// 随机初始化权重for (int i = 0; i < hidden_size; ++i)for (int j = 0; j < output_size; ++j)weights[i][j] = (rand() % 1000) / 1000.0;}// 计算高斯基函数double gaussian_function(const std::vector<double>& x, const std::vector<double>& center, double sigma) {double sum = 0.0;for (int i = 0; i < x.size(); ++i)sum += pow(x[i] - center[i], 2);return exp(-sum / (2 * pow(sigma, 2)));}// 前向传播std::vector<double> forward(const std::vector<double>& input) {std::vector<double> hidden_output(hidden_size);// 计算每个隐含层神经元的输出for (int i = 0; i < hidden_size; ++i) {hidden_output[i] = gaussian_function(input, centers[i], sigma[i]);}// 计算输出层for (int i = 0; i < output_size; ++i) {output[i] = 0.0;for (int j = 0; j < hidden_size; ++j) {output[i] += hidden_output[j] * weights[j][i];}}return output;}// 反向传播void backward(const std::vector<double>& input, const std::vector<double>& target) {// 计算输出误差std::vector<double> output_error(output_size);for (int i = 0; i < output_size; ++i) {output_error[i] = target[i] - output[i];}// 更新权重for (int i = 0; i < output_size; ++i) {for (int j = 0; j < hidden_size; ++j) {weights[j][i] += learning_rate * output_error[i] * output[j];}}}
};class RBFNeuralNetworkPIDController {
private:double Kp, Ki, Kd;RBFNeuralNetwork rbf_network;public:RBFNeuralNetworkPIDController(double Kp_init, double Ki_init, double Kd_init): Kp(Kp_init), Ki(Ki_init), Kd(Kd_init), rbf_network(2, 5, 3) {}  // 输入:误差和误差变化,输出:Kp, Ki, Kd增益double compute(double setpoint, double actual) {double error = setpoint - actual;static double prev_error = 0;double delta_error = error - prev_error;prev_error = error;// 神经网络的输入为误差和误差变化量std::vector<double> input = { error, delta_error };std::vector<double> output = rbf_network.forward(input);// 使用神经网络输出调整PID增益Kp += output[0];Ki += output[1];Kd += output[2];// 计算控制信号double control_signal = Kp * error + Ki * error + Kd * delta_error;return control_signal;}
};int main() {RBFNeuralNetworkPIDController pid_controller(1.0, 0.1, 0.01);double setpoint = 10.0;double actual = 0.0;// 引入参考模型(假设理想模型的目标输出是 10.0)double reference_output = setpoint;for (int step = 0; step < 50; ++step) {double control_signal = pid_controller.compute(setpoint, actual);actual += control_signal * 0.1;  // 假设控制信号对系统的影响std::cout << "Step: " << step << ", Control Signal: " << control_signal << ", Actual Output: " << actual << ", Reference Output: " << reference_output << std::endl;}return 0;
}

代码解释

  • RBFNeuralNetwork 类:这个类实现了一个简单的 RBF 神经网络。网络的输入是误差和误差变化量,输出是 PID 参数增益的调整量。网络使用高斯函数作为径向基函数进行计算。

  • RBFNeuralNetworkPIDController 类:该类将 RBF 神经网络用于 PID 控制器的增益调整。通过计算误差和误差变化量,它动态调整 PID 参数,并使用这些参数来计算控制信号。

  • 参考模型:在 main 函数中,假设目标输出(参考模型)为 10.0。每次控制周期,实际输出会根据 PID 控制计算调整,控制信号通过神经网络动态调整 PID 参数。

总结

基于 RBF 神经网络辨识的单神经元 PID 模型参考自适应控制结合了 RBF 神经网络的学习能力和 PID 控制的精确性。神经网络通过系统的输入(误差和误差变化量)进行自适应地调整 PID 增益,从而提高系统的响应性和稳定性。这种方法在面对非线性系统或复杂系统时,能够有效优化控制器性能。


http://www.ppmy.cn/server/144329.html

相关文章

力扣——寻找峰值

题目 162. 寻找峰值 - 力扣&#xff08;LeetCode&#xff09; 思路 第一想法就是直接遍历&#xff0c;时间复杂度为O(n)&#xff0c;肯定超时了。 然后就想到用二分&#xff0c;但是数组又不一定是有序的。仔细一思考&#xff0c;好像也可以用&#xff0c;关键在于这个峰值…

AG32既可以做MCU,也可以仅当CPLD使用

Question: AHB总线上的所有外设都需要像ADC一样&#xff0c;通过cpld处理之后才能使用? Reply: 不用。 除了ADC外&#xff0c;其他都是 mcu可以直接配置使用的。 Question: DMA和CMP也不用? Reply: DMA不用。 ADC/DAC/CMP 用。 CMP 其实配置好后&#xff0c;可以直…

解决——CPN IDE卡在启动画面中 initializing状态

安装好软件后启动一直卡在这个状态&#xff01;&#xff01;&#xff01;看后台内存也没有问题&#xff01;&#xff01;&#xff01; 解决方法&#xff1a; 你看到了什么&#xff1f; CPN IDE启动了&#xff0c;但前端卡在启动画面中。后端确实启动了&#xff0c;命令提示符…

23种设计模式-模板方法(Template Method)设计模式

文章目录 一.什么是模板方法模式&#xff1f;二.模板方法模式的特点三.模板方法模式的结构四.模板方法模式的应用场景五.模板方法模式的优缺点六.模板方法模式的C实现七.模板方法模式的JAVA实现八.代码解析九.总结 类图&#xff1a; 模板方法设计模式类图 一.什么是模板方法模…

大数据基于Spring Boot的化妆品推荐系统的设计与实现

摘 要 随着大数据时代的到来&#xff0c;人们对于个性化服务的需求越来越高。化妆品推荐系统作为一个认知智能模型段&#xff0c;在为消费者提供更好的购物体验方面发挥了重要作用。本研究基于大数据技术设计了一个高效准确的化妆品推荐系统。通过对海量数据的分析和处理&…

Spark使用过程中的 15 个常见问题、详细解决方案

目录 问题 1&#xff1a;Spark 作业超时问题描述解决方案Python 实现 问题 2&#xff1a;内存溢出问题描述解决方案Python 实现 问题 3&#xff1a;Shuffle 性能问题问题描述解决方案Python 实现 问题 4&#xff1a;Spark 作业调度不均问题描述解决方案Python 实现 问题 5&…

springboot:责任链模式实现多级校验

责任链模式是将链中的每一个节点看作是一个对象&#xff0c;每个节点处理的请求不同&#xff0c;且内部自动维护一个下一节点对象。 当一个请求从链式的首段发出时&#xff0c;会沿着链的路径依此传递给每一个节点对象&#xff0c;直至有对象处理这个请求为止。 属于行为型模式…

如何不使用密码,通过ssh直接登录服务器

在 Mac 上生成 SSH 密钥&#xff08;如果尚未生成&#xff09; 如果你还没有生成密钥&#xff0c;可以按照以下步骤在终端中生成 SSH 密钥对&#xff1a; 打开终端&#xff0c;执行命令&#xff1a; bash ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" …