Transformer-BiLSTM、Transformer、CNN-BiLSTM、BiLSTM、CNN五模型多变量回归预测

server/2024/11/14 12:10:58/

TransformerBiLSTMTransformerCNNBiLSTMBiLSTMCNN_0">Transformer-BiLSTMTransformerCNN-BILSTM.html" title=CNN-BiLSTM>CNN-BiLSTMBiLSTMCNN五模型多变量回归预测

目录

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

吐血售!聚划算!Transformer-BiLSTMTransformerCNN-BILSTM.html" title=CNN-BiLSTM>CNN-BiLSTMBiLSTMCNN五模型多变量回归预测
Transformer-BiLSTMTransformerCNN-BILSTM.html" title=CNN-BiLSTM>CNN-BiLSTMBiLSTMCNN五模型多变量回归预测 (Matlab2023b 多输入单输出)
1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式为excel!!!
2.Transformer-BiLSTMTransformerCNN-BILSTM.html" title=CNN-BiLSTM>CNN-BiLSTMBiLSTMCNN五模型多变量回归预测 (Matlab2023b 多输入单输出)。
3.运行环境要求MATLAB版本为2023b及其以上。
4.评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要代码中文注释清晰,质量极高。
在这里插入图片描述

程序设计

%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501


http://www.ppmy.cn/server/141856.html

相关文章

基于SpringBoot的垃圾分类回收系统+LW示例参考

1.项目介绍 系统角色:管理员、普通用户、回收员功能模块:管理员(用户管理、回收员管理、垃圾类型管理、商品分类管理、环保商城管理、上门回收管理、订单分配管理、订单管理、系统管理等)、回收员(订单分配、订单管理…

Java开发人员从零学习ArkTs笔记(二)-函数与类

大家好,我是一名热爱Java开发的开发人员。目前,我正在学习ARKTS(Advanced Java Knowledge and Technology Stack),并将不断输出我的学习笔记。我将在这里分享我学习ARKTS的过程和心得,希望能够为其他开发人…

ubuntu 安装kafka-eagle

上传压缩包 kafka-eagle-bin-2.0.8.tar.gz 到集群 /root/efak 目录 cd /root/efak tar -zxvf kafka-eagle-bin-2.0.8.tar.gz cd /root/efak/kafka-eagle-bin-2.0.8 mkdir /root/efakmodule tar -zxvf efak-web-2.0.8-bin.tar.gz -C /root/efakmodule/ mv /root/efakmodule/efak…

Python爬虫知识体系-----正则表达式-----持续更新

数据科学、数据分析、人工智能必备知识汇总-----Python爬虫-----持续更新:https://blog.csdn.net/grd_java/article/details/140574349 文章目录 一、正则基础1. 为什么使用正则2. 正则与re模块简介 二、正则表达式1. 匹配单个字符与数字2. 限定符3. 定位符4. 选择匹…

基于 PyTorch 从零手搓一个GPT Transformer 对话大模型

一、从零手实现 GPT Transformer 模型架构 近年来,大模型的发展势头迅猛,成为了人工智能领域的研究热点。大模型以其强大的语言理解和生成能力,在自然语言处理、机器翻译、文本生成等多个领域取得了显著的成果。但这些都离不开其背后的核心架…

C++(Qt)软件调试---无法校验pdb时间戳(23)

C(Qt)软件调试—无法校验pdb时间戳(23) 文章目录 C(Qt)软件调试---无法校验pdb时间戳(23)[toc]1、概述🐜2、前期准备🪲3、开始分析🦧4、相关地址🐐 更多精彩内容👉内容导…

【论文笔记】The Power of Scale for Parameter-Efficient Prompt Tuning

🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: The Power of Scale for P…

Rust 所有权机制

Rust 所有权机制 本文示例代码地址 所有权是Rust中最独特的特性,它让Rust无需GC就可以保证内存安全。 什么是所有权? 所有权(ownership)是 Rust 用于如何管理内存的一组规则。所有程序都必须管理其运行时使用计算机内存的方式…