C++:线程(thread)的创建、调用及销毁

server/2024/11/13 9:36:50/

在 C++ 中,线程的管理主要依赖于标准库 std::thread,自 C++11 起,这一功能被标准化,使得我们能够更加方便地创建、管理和销毁线程。这里我们详细讲解线程的创建、调用和销毁流程。

1. 线程的创建

创建线程通常是为了在单独的线程中执行某个任务。我们可以通过 std::thread 对象来创建一个新的线程。一个线程可以从以下几种类型的可调用对象启动:

  • 普通函数
  • Lambda 表达式
  • 函数对象
  • 类的成员函数

1.1 使用普通函数

#include <iostream>
#include <thread>void printMessage() {std::cout << "Hello from thread!" << std::endl;
}int main() {std::thread myThread(printMessage); // 创建一个线程并启动 printMessagemyThread.join();                    // 等待线程完成return 0;
}
  • std::thread myThread(printMessage) 创建一个线程对象 myThread,并启动执行 printMessage 函数。
  • myThread.join() 等待线程完成。如果没有调用 join()detach(),程序在结束时会崩溃。

1.2 使用 Lambda 表达式

#include <iostream>
#include <thread>int main() {std::thread myThread([]() {std::cout << "Hello from lambda!" << std::endl;});myThread.join();return 0;
}
  • 这里我们创建了一个线程并使用 lambda 表达式作为线程函数。Lambda 允许我们在局部作用域中定义线程任务。

1.3 使用函数对象

#include <iostream>
#include <thread>class PrintTask {
public:void operator()() const {std::cout << "Hello from function object!" << std::endl;}
};int main() {std::thread myThread(PrintTask()); // 创建线程并启动myThread.join();return 0;
}
  • 这是通过重载 operator() 来定义一个可调用的对象,该对象可以直接用来创建线程。

1.4 使用类的成员函数

#include <iostream>
#include <thread>class MyClass {
public:void memberFunction() {std::cout << "Hello from member function!" << std::endl;}
};int main() {MyClass obj;std::thread myThread(&MyClass::memberFunction, &obj); // 需要传递对象指针myThread.join();return 0;
}
  • 如果是成员函数,则需要传递对象指针。&MyClass::memberFunction 表示成员函数地址,&obj 是指向 MyClass 实例的指针。

2. 线程的调用

  • 线程的参数传递:你可以向线程函数传递参数,它们会按照值传递的方式进行复制。为了传递引用,可以使用 std::refstd::cref

#include <iostream>
#include <thread>void printNumber(int n) {std::cout << "Number: " << n << std::endl;
}int main() {int value = 42;std::thread myThread(printNumber, value);myThread.join(); // 等待线程完成return 0;
}
  • 捕获引用
void increment(int& n) {++n;
}int main() {int value = 0;std::thread myThread(increment, std::ref(value));myThread.join();std::cout << "Value after increment: " << value << std::endl;return 0;
}

这里 std::ref 确保 value 以引用的形式传递。

3. 线程的同步

  • join():主线程会等待 myThread 结束。join 是同步机制,用于确保线程完成后主线程才会继续。
std::thread myThread(task);
myThread.join();
  • detach():将线程从主线程分离,让它独立运行。独立运行的线程在后台执行,主线程不再等待它完成。需谨慎使用,可能引发访问冲突。
std::thread myThread(task);
myThread.detach();

4. 线程的销毁

  • std::thread 对象离开作用域时,如果没有调用 join()detach(),程序会触发异常终止。
  • 使用 join() 可以让主线程等待子线程完成,从而安全地销毁线程。
  • 使用 detach() 可以将线程从 std::thread 对象中分离,使其成为独立线程。调用 detach() 后,std::thread 对象不再管理该线程。

5. 线程的生命周期管理

  • RAII:考虑使用 RAII 类管理线程生命周期,确保在对象析构时 join()detach() 线程,从而避免泄漏和不正确的管理。
class ThreadGuard {
public:explicit ThreadGuard(std::thread& t) : thread(t) {}~ThreadGuard() {if (thread.joinable()) {thread.join();}}private:std::thread& thread;
};

6. 线程的注意事项

  • 避免数据竞争和同步问题:线程共享数据时要小心。可以使用 std::mutex 进行保护,或者使用其他同步机制如 std::lock_guard
  • 避免内存泄漏:如果使用 new thread(),确保 delete 以释放分配的内存。
  • 检查 joinable() 状态:调用 join()detach() 前,可以用 joinable() 检查线程状态。

 7. 示例总结

#include <iostream>
#include <thread>void task(int id) {std::cout << "Thread " << id << " is running." << std::endl;
}int main() {std::thread t1(task, 1); // 创建线程并传递参数std::thread t2(task, 2);t1.join(); // 等待 t1 完成t2.join(); // 等待 t2 完成return 0;
}

8. 线程管理总结

  • 使用 std::thread 创建和管理线程。
  • join()detach() 用于控制线程的生命周期。
  • 避免重复 join()detach(),确保资源管理得当。
  • 使用同步机制保护共享数据的访问。

通过这种方式,你可以更灵活地创建、管理和销毁 C++ 线程,确保程序的并发性和资源管理的安全性。


http://www.ppmy.cn/server/140800.html

相关文章

《Rust语言圣经》Rust教程笔记17:2.Rust基础入门(2.6模式匹配)2.6.2解构Rust Option<T>

文章目录 2. Rust 基础入门2.6. 模式匹配2.6.2. 解构Option注意不要忘记Some 和 None 是 Option 枚举的成员匹配 Option<T>1、传入参数 Some(5)2、传入参数 None 2. Rust 基础入门 2.6. 模式匹配 2.6.2. 解构Option 在枚举那章&#xff0c;提到过 Option 枚举&#xf…

MYSQL隔离性原理——MVCC

表的隐藏字段 表的列包含用户自定义的列和由系统自动创建的隐藏字段。我们介绍3个隐藏字段&#xff0c;不理解也没有关系&#xff0c;理解后面的undo log就懂了&#xff1a; DB_TRX_ID &#xff1a;6 byte&#xff0c;最近修改( 修改/插入 )事务ID&#xff0c;记录创建这条记…

ts 将100个元素,每行显示9个元素,然后显示出所有行的元素,由此我们延伸出一个项目需求的简单算法实现。

1、先看一下baidu ai出的结果&#xff1a; 2、我们将上面的代码修改下&#xff0c;定义一个数组&#xff0c;然后记录每行的行号及相应的元素&#xff1a; <template><div>console</div> </template> <script setup lang"ts"> import …

基于交互多模型 (IMM) 算法的目标跟踪,使用了三种运动模型:匀速运动 (CV)、匀加速运动 (CA) 和匀转弯运动 (CT)。滤波方法为EKF

基于交互多模型 (IMM) 算法的目标跟踪&#xff0c;使用了三种运动模型&#xff1a;匀速运动 (CV)、匀加速运动 (CA) 和匀转弯运动 (CT)。滤波方法为EKF 文章目录 运行结果源代码运行结果详解代码详解概述主要功能代码详细介绍1. 初始化与仿真参数设置2. 定义模型参数3. 状态转移…

maven工程结构说明

1、maven工程文件目录 |-- pom.xml # Maven 项目管理文件 |-- src # 放项目源文件|-- main # 项目主要代码| |-- java # Java 源代码目录| | -- com/example/myapp…

【Pikachu】File Inclusion文件包含实战

永远也不要忘记能够笑的坚强&#xff0c;就算受伤&#xff0c;我也从不彷徨。 1.File Inclusion(文件包含漏洞)概述 File Inclusion(文件包含漏洞)概述 文件包含&#xff0c;是一个功能。在各种开发语言中都提供了内置的文件包含函数&#xff0c;其可以使开发人员在一个代码…

供应商srm管理,招投标管理,电子采购管理,在线询价,在线报价,供应商准入审核(java代码)

前言&#xff1a; 随着互联网和数字技术的不断发展&#xff0c;企业采购管理逐渐走向数字化和智能化。数字化采购平台作为企业采购管理的新模式&#xff0c;能够提高采购效率、降低采购成本、优化供应商合作效率&#xff0c;已成为企业实现效益提升的关键手段。系统获取在文末…

Python 爬虫使用 BeautifulSoup 进行 XPath 和 CSS 选择器定位

Python 中使用 BeautifulSoup 进行 XPath 和 CSS 选择器定位 在 Python 中&#xff0c;BeautifulSoup 是一个常用的 HTML 和 XML 解析库。它允许我们轻松地定位和提取网页中的特定元素。通常我们会使用 CSS 选择器来查找元素&#xff0c;然而&#xff0c;XPath 也是一种非常强…