C++容器适配器的模拟实现-stack、queue、priority_queue

server/2024/10/23 17:55:57/

###

容器适配器是将容器转换到其他容器自身不方便使用的地方,但是就容器适配器其本身还是包装的容器,所以这个类模板中各个接口的实现都是调用的容器的接口,因为容器适配器可能适配多个容器,所以这个类模板的模板参数中有一个参数是代表容器类型的,方便传参过来能及时改变;

一、stack的模拟

这是这个类模板的模板,那么我们也模拟这样实现,首先解读,T是stack里面存放的数据类型,Container是stack里面包装的容器的类型,默认是deque,这是因为deque这个容器不仅兼顾了vector和list的基本接口,并且deque相比于vector不需要浪费过多空间、头删头插的效率高,相比于list的缓存利用率更高,这个和deque的底层结构有关;

###stack实现的代码:

#pragma once
#include<deque>
#include<list>
#include<vector>
using namespace std;
namespace S
{template<class T,class Container = deque<T>>class Stack{public:Stack()//调用Container的默认构造函数{}bool empty()const{return _con.empty();}size_t size()const{return _con.size();}const T& top()const{return _con.back();}void push(const T& val = T()){_con.push_back(val);}void pop(){_con.pop_back();}private:Container _con;};
}

首先stack对于vector、list、deque都能作为它们的适配器,所以头文件包含了这几个容器;

其次看到这个模板类的成员变量,是一个Container,代表容器类型,这个容器类型默认为deque,用这个类型去定义一个容器作为stack这个适配器的成员变量,那么在实现stack的接口时,就直接调用容器_con的接口;

###测试:

void test1()
{Stack<int> st;st.push(1);st.push(2);st.push(3);st.push(4);st.push(5);cout << "数据个数:" << st.size() << endl;cout << "是否为空:" << st.empty() << endl;cout <<"栈顶数据:"  << st.top() << endl;st.pop();cout << "数据个数:" << st.size() << endl;cout << "栈顶数据:" << st.top() << endl;
}

注意在源文件中测试时要包含实现stack的头文件,并且展开命名空间;

###运行结果:

二、queue的模拟

和stack大差不差,注意它不能作为vector的适配器,队列queue的头删(出队列)的接口要调用pop_front,而vector没有这个接口,所以不能;

###代码:

namespace Q
{template<class T ,class Container = deque<T>>class Queue{public:Queue(){}bool empty()const{return _con.empty();}size_t size()const{return _con.size();}const T& front()const{return _con.front();}const T& back()const{return _con.back();}void push(const T& val=T()){_con.push_back(val);}void pop(){_con.pop_front();}private:Container _con;};
}

 ###测试:

void test2()
{Queue<int> q;for (int i = 1; i <= 5; i++){q.push(i);}cout << "是否为空:" << q.empty() << endl;cout << "数据个数:" << q.size() << endl;cout << "队头数据:" << q.front() << endl;cout << "队尾数据:" << q.back() << endl;q.pop();//删除队头数据cout << "队头数据:" << q.front() << endl;
}

注意Queue<int> q;可以显示传它的容器类型,stack也是一样;

###运行结果:

三、priority_queue的模拟

这个是优先级队列,它的其他地方和queue一样,就是队头的元素一直是最大的或者是最小的,它的底层实现有堆的部分,大堆的堆顶也就是最大的,小堆的相反;所以在实现时涉及到堆的向上和向下调正的方法;

另外,我们要写一份类模板,这个类模板要求可以通过接收不同的模板参数来调正这个优先级队列是通过大堆实现的还是通过小堆实现的 ,这也是库里面的实现方法;也就是说,这个适配器的模板参数中要包含一个类型,这个类型实例化出来的对象作为适配器的成员变量(和_con类似),并且这个对象可以调用自己的函数来实现更大或者更小的比较,这里需要使用仿函数;

所谓的仿函数就是重载()的函数;

直接看实现的代码来解读

###代码实现:

namespace Q
{	
//仿函数重载()template<class T>class Less{public:bool operator()(T& x, T& y){return x < y;}};template<class T>class Greater{public:bool operator()(T& x, T& y){return x > y;}};template<class T,class Container =vector<T>,class Compare = Less<T>>class Priority_Queue{public:Priority_Queue(){}bool empty()const{return _con.empty();}size_t size()const{return _con.size();}const T& top()const{return _con[0];}void AdjustUp(){int child = _con.size() - 1;int parent = (child - 1) / 2;while (child >= 0){if(_com(_con[parent],_con[child])){swap(_con[parent], _con[child]);child = parent;parent = (child - 1) / 2;}else{break;}}}void push(const T& val = T()){_con.push_back(val);AdjustUp();//向上调正建堆}void AdjustDown(){int parent = 0;int child = parent * 2 + 1;while (child < _con.size()){if (child + 1 < _con.size() && _com(_con[child], _con[child + 1])){child++;}if (_com(_con[parent], _con[child])){swap(_con[parent], _con[child]);parent = child;child = parent * 2 + 1;}else{break;}}}void pop(){assert(_con.size());swap(_con[0], _con[_con.size() - 1]);_con.pop_back();AdjustDown();}private:Container _con;Compare _com;//调用仿函数就直接_com(),相当于_com.operator();};}

第二个模板参数是vector这是因为里面有top的接口,而vector也有; 

首先看到类Less和Greater,里面有成员函数,都是重载的()的函数,也就是仿函数,包装成一个类是因为类可以作为类型传到模板参数中;

看到优先级队列的类模板的实现,第三个模板参数就是上面封装的类,这个默认是Less,在看到优先级队列的成员变量,除了我们已近知道的_con,还有一个_com,这是通过Less实例化出来的对象,这个对象可以直接在后面加上()来调用它自己的成员函数,那么就可以来进行比较了;

其他的接口很平常,看到push和pop的接口,首先push,要进行向上调整,里面使用_com(),就是比较父节点和子节点,父节点更小就和子节点交换,实现大堆;pop删除是先交换队头和队尾的数据再pop_back(),相当于删除了队头的节点,之后再进行向下调整,把次大的换到根节点处;

只有涉及到父节点和子节点比较大小时才用到_com(),这是因为这个函数的比较决定了是大堆还是小堆,当传Less<T>时就是大堆;传Greater时就是小堆(把更大的换到了子节点);

###测试:

void test3()
{Priority_Queue < int,vector<int>> pq;pq.push(1);pq.push(2);pq.push(3);pq.push(4);pq.push(5);pq.pop();cout << "是否为空:" << pq.empty() << endl;cout << "数据个数:" << pq.size() << endl;cout << "队头数据:" << pq.top() << endl;//也是堆顶数据
}

###运行结果

push走完 

 

pop走完

可以观察到这就是按照堆的规则调整的; 


http://www.ppmy.cn/server/134223.html

相关文章

基于SpringBoot+Vue+uniapp的电影信息推荐APP的详细设计和实现

详细视频演示 请联系我获取更详细的演示视频 项目运行截图 技术框架 后端采用SpringBoot框架 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的开源框架。它采用约定大于配置的理念&#xff0c;提供了一套默认的配置&#xff0c;让开发者可以更专注于业务逻辑而不…

Mamba学习笔记(4)——Mamba核心

文章目录 A Visual Guide to Mamba and State Space Models第一部分&#xff1a;The Problem with Transformers第二部分&#xff1a;The State Space Model&#xff08;SSM&#xff09;What is a State Space?What is a State Space Model? 第三部分&#xff1a;Mamba - Sel…

【UE5】将2D切片图渲染为体积纹理,最终实现使用RT实时绘制体积纹理【第六篇-阶段总结篇】

因为马上就要进入下一个阶段&#xff0c;制作动态编辑体积纹理的模块。 但在这之前&#xff0c;要在这一章做最后一些整理。 首先&#xff0c;我们完成没完成的部分。其次&#xff0c;最后整理一下图表。最后&#xff0c;本文附上正在用的贴图 完善Shader 还记得我们之前注…

修改pq_default.ini禁用降噪,解决S905X3电视盒硬解视频画质模糊、严重涂抹得像油画、水彩画的问题

笔者使用一台处理器芯片为 S905X3 的电视盒将近一年&#xff0c;性能比之前的 RK3328 的盒子有所提升&#xff0c;但我对它视频解码方面感到越来越不爽&#xff0c;该盒子的硬解视频总是开启美颜降噪和锐化&#xff0c;导致硬解视频的画质模糊&#xff0c;细节都被磨平&#xf…

《C++开发 AR 游戏:开启未来娱乐新潮流》

一、引言 在当今科技飞速发展的时代&#xff0c;增强现实&#xff08;AR&#xff09;技术正以惊人的速度改变着我们的生活和娱乐方式。从智能手机上的 AR 滤镜到沉浸式的 AR 游戏&#xff0c;这项技术的应用越来越广泛。而在众多编程语言中&#xff0c;C以其高效、强大的性能在…

基于SSM+微信小程序的房屋租赁管理系统(房屋2)

&#x1f449;文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 基于SSM微信小程序的房屋租赁管理系统实现了有管理员、中介和用户。 1、管理员功能有&#xff0c;个人中心&#xff0c;用户管理&#xff0c;中介管理&#xff0c;房屋信息管理&#xff…

Prisma ORM 第四章 表之间关系的建立和删除

1. content 在 Prisma 中&#xff0c;connect 是一个用于建立关系的选项&#xff0c;主要用于在创建或更新记录时将现有记录关联起来。connect 允许你在不重新创建相关记录的情况下&#xff0c;将它们链接到当前记录。这在处理多对多关系或多对一关系时特别有用。 1. connect…

NeRF三维重建—神经辐射场Neural Radiance Field(二)体渲染相关

NeRF三维重建—神经辐射场Neural Radiance Field&#xff08;二&#xff09;体渲染相关 粒子采集部分 粒子采集的部分我们可以理解为&#xff0c;在已知粒子的情况下&#xff0c;对图片进行渲染的一个正向的过程。 空间坐标(x,y,z&#xff09;发射的光线通过相机模型成为图片上…