轻松复现一张AI图片

server/2024/12/29 16:55:19/

轻松复现一张AI图片

现在有一个非常漂亮的AI图片,你是不是想知道他是怎么生成的?

今天我会交给大家三种方法,学会了,什么图都可以手到擒来了。

需要的软件

在本教程中,我们将使用AUTOMATIC1111 stable diffusion WebUI。这是一款流行且免费的软件。您可以在Windows、Mac或Google Colab上使用这个软件。

方法1: 通过阅读PNG信息从图像中获取提示

如果AI图像是PNG格式,你可以尝试查看提示和其他设置信息是否写在了PNG元数据字段中。
首先,将图像保存到本地。
打开AUTOMATIC1111 WebUI。导航到PNG信息页面。

image-20240409232941011
将图像拖放到左侧的画布上。

上传了图像的PNG信息页面。
在右边你会找到关于提示词的有用信息。你还可以选择将提示和设置发送到txt2img、img2img、inpainting或者Extras页面进行放大。

方法2:使用CLIP interrogator从图像中推测Prompt

在处理图像信息时,我们常常会发现直接的方法并不总是有效。

有时候,信息并没有在最初就被记录在图像中,或者在后续的图像优化过程中被Web服务器去除。

也有可能这些信息并非由Stable diffusion这类AI技术生成。

面对这种情况,我们可以尝试使用CLIP interrogator作为替代方案。

CLIP interrogator是一种AI模型,它具备推测图像内容标题的能力。这个工具不仅适用于AI生成的图像,也能够应对各种类型的图像。通过这种方式,我们能够对图像内容进行更深入的理解和分析。

什么是CLIP?

CLIP(Contrastive Language–Image Pre-training)是一个神经网络,它将视觉概念映射到自然语言中。CLIP模型是通过大量的图像和图像信息对进行训练的。

image-20240409233700659

在我们的用例中,CLIP模型能够通过对给定图片的分析,推断出一个恰当的图片描述。

这个描述可以作为提示词,帮助我们进一步理解和描述图片的内容。CLIP模型通过学习大量的图像和相关文本数据,掌握了图像识别和语义理解的能力,因此它能够捕捉到图片中的关键元素,并将其转化为一个描述性的标题。

WebUI中自带的CLIP interrogator

如果你倾向于避免安装额外的扩展,可以选择使用AUTOMATIC1111提供的内置CLIP interrogator功能。

WebUI提供了两种识别图像信息的功能。一个是clip:这个功能底层基于BLIP模型,它是在论文《BLIP: 为统一的视觉语言理解和生成进行语言图像预训练》中由李俊楠以及其团队所提出的CLIP模型的一个变种。一个是DeepBooru, 这个比较适合识别二次元图片。

要利用这个内置的CLIP interrogator,你可以按照以下简单的步骤操作:

  1. 启动AUTOMATIC1111:首先,你需要打开AUTOMATIC1111的网站。

  2. 导航至img2img页面:在AUTOMATIC1111的界面中,找到并点击“img2img”这一选项。这是一个专门的页面,用于上传和处理图像。

  3. 上传图像到img2img画布:在这个页面上,你会找到一个用于上传图像的区域,通常被称为“画布”。点击上传按钮,选择你想要分析的图像文件,并将其上传到画布上。

  4. 上传之后在界面右边就可以找到两个interrogator工具了:

image-20240409235643665

点击这两个按钮,就可以获得图像的描述信息了。

我们可以得到下面的信息:

a woman in a blue top and pink skirt standing on a hill near the ocean with a grassy area in the background,Ai Xuan,ocean,a statue,rococo,

我们用这段提示发到text2image中看看效果:

image-20240410161245669

嗯…大体上还是有点相似的… 因为图片跟我们的底模,种子还有采样多种因素有关。所以你想1比1复制,这个比较难。

CLIP扩展

如果您在使用AUTOMATIC1111的内置CLIP interrogator时发现其功能不足以满足您的需求,或者您希望尝试使用不同的CLIP模型来获得更多样化的结果,那么您可以考虑安装CLIP interrogator扩展。这个扩展将为您提供更多的选项和灵活性,以适应您特定的使用场景。

这个插件的下载地址如下:

https://github.com/pharmapsychotic/clip-interrogator-ext

要使用CLIP interrogator扩展。

  1. 打开AUTOMATIC1111 WebUI。

  2. 转到interrogator页面。

  3. 将图像上传到图像画布。

  4. CLIP模型下拉菜单中选择ViT-L-14-336/openai。这是Stable Diffusion v1.5中使用的语言嵌入模型。
    image-20240410000207328

  5. 单击生成以生成提示。

对SDXL模型进行CLIP

如果你的目标是使用Stable Diffusion XL (SDXL)模型,那么我们需要选择不同的CLIP模型。

在“interrogator”页面上,你可以选择很多clip模型,如果要和SDXL模型一起工作的话,那么可以选择ViT-g-14/laion2b_s34b_b88k这个选项。

选择ViT-g-14/laion2b_s34b_b88k模型后,系统将会根据这个模型的特性生成相应的提示。你可以使用这个提示词作为SDXL的提示,从而可以更精确地生成与原始图像内容相符合的图像。

ViT-g-14/laion2b_s34b_b88k模型是一个基于Vision Transformer (ViT)架构的预训练模型,它在大型图像数据集laion2b上进行了训练,具有34亿个参数。这个模型在图像识别和理解方面表现出色,能够有效地捕捉图像的关键特征,并生成与原始图像内容紧密相关的提示。

通过这种方式,就可以确保在使用SDXL模型进行图像生成时,所得到的输出图像能够更好地反映原始图像的意图和风格。

总结一下

我们讲了三种方法来从图片信息中提取出对应的Prompt。

你应该首先尝试使用PNG信息方法。这种方法的优势在于,如果图像中包含了完整的元数据,那么您可以一次性获取到包括提示、使用的模型、采样方法、采样步骤等在内的所有必要信息。这对于重新创建图像非常有帮助。

如果PNG没有信息可用,那么可以考虑使用BLIP和CLIP模型。对于v1.5模型来说,ViT-g-14/laion2b_s34b_b88k模型可能是一个不错的选择,它不仅适用于SDXL模型,也可能在v1.5模型中表现出色。

另外,我们在构建提示词的时候,不要害怕对提示词进行修改。因为自动生成的提示可能并不完全准确,或者可能遗漏了一些图像中的关键对象。

所以需要根据自己的观察和需求,来修改提示词以确保它能准确地描述图像内容。这对于最终生成的图像质量和准确性至关重要。

同时,选择正确的checkpoint模型也非常关键。因为提示中可能并不总是包含正确的风格信息。

例如,如果您的目标是生成一个真实人物图像,那么你肯定不能选择一个卡通模型。

点我查看更多精彩内容:www.flydean.com


http://www.ppmy.cn/server/11618.html

相关文章

坚蛋运动新质生产力实践——“AI健康”战略引领产品和服务创新

进入AI时代,全球互联网企业均开启了以大模型及其应用为代表的第四次工业革命的激烈竞赛。坚蛋运动已在全国范围内布局300门店,预计实现2024年500、2025年1000门店,作为国内运动健康产业的头部品牌,坚蛋运动率先提出并推动“AI健康…

Servlet(JavaEE开发)

目录 一、Tomcat服务器 二、Servlet生命周期详解 三、HttpRequest对象 四、HttpResponse对象 五、HttpSession对象 六、ServletContext对象 七、过滤器、 八、监听器 九、JSP技术介绍 一、Tomcat服务器 Tomcat官网:Apache Tomcat - Welcome! Tomcat的安装…

23种设计模式之行为模式篇

三、行为模式 这类模式主要关注对象之间的通信,尤其是它们之间进行通信的方式和时机。 包括: 策略模式(Strategy)模板方法模式(Template Method)观察者模式(Observer)迭代器模式&…

嵌入式面试-回答I2C

说明: 此文章是在阅读了一些列面试相关资料之后对于一些常见问题的整理,主要针对的是嵌入式软件面试中涉及到的问答,努力精准的抓住重点进行描述。若有不足非常欢迎指出,感谢!在总结过程中有些答案没标记参考来源&…

Redis中的订阅发布和事务(一)

订阅发布 PUBSUB NUMSUB PUBSUB NUMSUB [channel-1 channel-2… channel-n]子命令接受任意多个频道作为输入参数,并返回这些频道的订阅者数量。 这个子命令是通过pubsub_channels字典中找到频道对应的订阅者链表,然后返回订阅者链表的长度来实现的(订阅…

第4章 EC2 - 4.3 密钥对

aws入门篇 06.EC2之密钥对 4.3.1 对称加密 加密和解密是使用同一把钥匙 4.3.2 非对称加密 1️⃣公钥加密私钥解密 比如说,我自己的网站,我用公钥加密了,每一个想学我课程的人呢,我给他一个兑换码,这个兑换码就相当于…

常用命令及简单shell语句

常用命令及简单shell语句 ● 删除注释和空行 sed -e "s/#.*//g" test_file.conf | awk {if (length !0) print $0} ● ES查看更多有关于集群信息、当前节点统计信息等等 curl -XGET http://ip:9200/_cat/nodes?pretty ● 过滤僵尸进程 ps -A -ostat,ppid,pid,cmd…

Unity类银河恶魔城学习记录12-18,19 p140 Options UI-p141 Finalising ToolTip源代码

Alex教程每一P的教程原代码加上我自己的理解初步理解写的注释,可供学习Alex教程的人参考 此代码仅为较上一P有所改变的代码 【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili UI_ToolTip.cs using TMPro; using UnityEngine;public class UI_ToolTip :…