Python和C++(CUDA)及Arduino雅可比矩阵导图

🎯要点

  1. 对比三种方式计算
  2. 读取二维和三维三角形四边形和六面体网格
  3. 运动学奇异点处理
  4. 医学图像成像组学分析
  5. 特征敏感度增强
  6. 机械臂路径规划和手臂空间操作变换
  7. 苹果手机物理稳定性中间轴定理
    在这里插入图片描述

Python雅可比矩阵

多变量向量值函数的雅可比矩阵推广了多变量标量值函数的梯度,而这又推广了单变量标量值函数的导数。换句话说,多变量标量值函数的雅可比矩阵是其梯度(的转置),而单变量标量值函数的梯度是其导数。

在函数可微的每个点,其雅可比矩阵也可以被认为是描述函数在该点附近局部施加的“拉伸”、“旋转”或“变换”量。例如,如果使用 ( x ′ , y ′ ) = f ( x , y ) \left(x^{\prime}, y^{\prime}\right)= f (x, y) (x,y)=f(x,y) 平滑变换图像,则雅可比矩阵 J f ( x , y ) J _{ f }( x, y) Jf(x,y),描述了 ( x , y ) (x, y) (x,y)邻域中的图像如何变换。如果函数在某点可微,其微分在坐标系中由雅可比矩阵给出。然而,函数不需要可微才能定义其雅可比矩阵,因为只需要存在其一阶偏导数。

考虑以下向量函数,该函数将 n n n 维向量 x ∈ R n x \in R ^n xRn 作为输入,并将该向量映射到 m m m 维向量:
f ( x ) = [ f 1 ( x 1 , x 2 , x 3 , … , x n ) f 2 ( x 1 , x 2 , x 3 , … , x n ) ⋮ f m ( x 1 , x 2 , x 3 , … , x n ) ] f ( x )=\left[\begin{array}{c} f_1\left(x_1, x_2, x_3, \ldots, x_n\right) \\ f_2\left(x_1, x_2, x_3, \ldots, x_n\right) \\ \vdots \\ f_m\left(x_1, x_2, x_3, \ldots, x_n\right) \end{array}\right] f(x)= f1(x1,x2,x3,,xn)f2(x1,x2,x3,,xn)fm(x1,x2,x3,,xn)

其中向量 x x x 定义为
x = [ x 1 x 2 ⋮ x n ] x =\left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array}\right] x= x1x2xn
非线性向量函数 f f f 产生 m m m 维向量
[ f 1 ( x 1 , x 2 , x 3 , … , x n ) f 2 ( x 1 , x 2 , x 3 , … , x n ) ⋮ f m ( x 1 , x 2 , x 3 , … , x n ) ] \left[\begin{array}{c} f_1\left(x_1, x_2, x_3, \ldots, x_n\right) \\ f_2\left(x_1, x_2, x_3, \ldots, x_n\right) \\ \vdots \\ f_m\left(x_1, x_2, x_3, \ldots, x_n\right) \end{array}\right] f1(x1,x2,x3,,xn)f2(x1,x2,x3,,xn)fm(x1,x2,x3,,xn)
其条目是 m m m 函数 f i , i = 1 , 2 , … , n f_i, i=1,2, \ldots, n fi,i=1,2,,n,将向量 x x x 的条目映射为标量数。

函数 f ( ⋅ ) f (\cdot) f() 的雅可比矩阵是 m m m × n n n 维偏导数矩阵,定义为
∂ f ∂ x = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ⋯ ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ⋯ ∂ f 2 ∂ x n ⋮ ⋮ ⋮ ∂ f m ∂ x 1 ∂ f m ∂ x 2 … ∂ f m ∂ x n ] \frac{\partial f }{\partial x }=\left[\begin{array}{cccc} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \ldots & \frac{\partial f_m}{\partial x_n} \end{array}\right] xf= x1f1x1f2x1fmx2f1x2f2x2fmxnf1xnf2xnfm
该矩阵的第一行由 f 1 ( ⋅ ) f_1(\cdot) f1() 分别相对于 x 1 、 x 2 、 … 、 x n x_1、x_2、\ldots、x_n x1x2xn 的偏导数组成。类似地,该矩阵的第二行由 f 2 ( ⋅ ) f_2(\cdot) f2() 分别相对于 x 1 、 x 2 、 … 、 x n x_1、x_2、\ldots、x_n x1x2xn 的偏导数组成。以同样的方式,我们构造雅可比矩阵的其他行。

在这里,我们展示了用于符号计算雅可比矩阵和创建 Python 函数的 Python 脚本,该函数将返回给定输入向量 x x x 的雅可比矩阵的数值。为了验证 Python 实现,让我们考虑以下测试用例函数
f = [ x 1 x 2 sin ⁡ ( x 1 ) cos ⁡ ( x 3 ) x 3 e x 4 ] f =\left[\begin{array}{c} x_1 x_2 \\ \sin \left(x_1\right) \\ \cos \left(x_3\right) \\ x_3 e^{x_4} \end{array}\right] f= x1x2sin(x1)cos(x3)x3ex4
其中 x x x
x = [ x 1 x 2 x 3 x 4 ] x =\left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right] x= x1x2x3x4

f 1 ( x 1 , x 2 , x 3 , x 4 ) = x 1 x 2 f 2 ( x 1 , x 2 , x 3 , x 4 ) = sin ⁡ ( x 1 ) f 3 ( x 1 , x 2 , x 3 , x 4 ) = cos ⁡ ( x 3 ) f 4 ( x 1 , x 2 , x 3 , x 4 ) = x 3 e x 4 \begin{aligned} & f_1\left(x_1, x_2, x_3, x_4\right)=x_1 x_2 \\ & f_2\left(x_1, x_2, x_3, x_4\right)=\sin \left(x_1\right) \\ & f_3\left(x_1, x_2, x_3, x_4\right)=\cos \left(x_3\right) \\ & f_4\left(x_1, x_2, x_3, x_4\right)=x_3 e^{x_4} \end{aligned} f1(x1,x2,x3,x4)=x1x2f2(x1,x2,x3,x4)=sin(x1)f3(x1,x2,x3,x4)=cos(x3)f4(x1,x2,x3,x4)=x3ex4
该函数的雅可比行列式是
∂ f ∂ x = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 1 ∂ x 3 ∂ f 1 ∂ x 4 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ∂ f 2 ∂ x 3 ∂ f 2 ∂ x 4 ∂ f 3 ∂ x 1 ∂ f 3 ∂ x 2 ∂ f 3 ∂ x 3 ∂ f 3 ∂ x 4 ∂ f 4 ∂ x 1 ∂ f 4 ∂ x 2 ∂ f 4 ∂ x 3 ∂ f 4 ∂ x 4 ] \frac{\partial f }{\partial x }=\left[\begin{array}{llll} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} & \frac{\partial f_1}{\partial x_4} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} & \frac{\partial f_2}{\partial x_4} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} & \frac{\partial f_3}{\partial x_3} & \frac{\partial f_3}{\partial x_4} \\ \frac{\partial f_4}{\partial x_1} & \frac{\partial f_4}{\partial x_2} & \frac{\partial f_4}{\partial x_3} & \frac{\partial f_4}{\partial x_4} \end{array}\right] xf= x1f1x1f2x1f3x1f4x2f1x2f2x2f3x2f4x3f1x3f2x3f3x3f4x4f1x4f2x4f3x4f4
通过计算这些偏导数,我们得到
∂ f ∂ x = [ x 2 x 1 0 0 cos ⁡ ( x 1 ) 0 0 0 0 0 − sin ⁡ ( x 3 ) 0 0 0 e x 4 x 3 e x 4 ] \frac{\partial f }{\partial x }=\left[\begin{array}{cccc} x_2 & x_1 & 0 & 0 \\ \cos \left(x_1\right) & 0 & 0 & 0 \\ 0 & 0 & -\sin \left(x_3\right) & 0 \\ 0 & 0 & e^{x_4} & x_3 e^{x_4} \end{array}\right] xf= x2cos(x1)00x100000sin(x3)ex4000x3ex4

import numpy as np
from sympy import *init_printing()x=MatrixSymbol('x',4,1)
f=Matrix([[x[0]*x[1]],[sin(x[0])],[cos(x[2])],[x[2]*E**(x[3])]])JacobianSymbolic=f.jacobian(x)
JacobianFunction=lambdify(x,JacobianSymbolic)
testCaseVector=np.array([[1],[1],[1],[1]])
JacobianNumerical=JacobianFunction(testCaseVector)

定义符号向量“x”如下

x=MatrixSymbol('x',4,1)

非线性向量函数“f”定义为

=Matrix([[x[0]*x[1]],[sin(x[0])],[cos(x[2])],[x[2]*E**(x[3])]])
JacobianSymbolic=f.jacobian(x)
JacobianFunction=lambdify(x,JacobianSymbolic)

测试向量处评估雅可比行列式。

testCaseVector=np.array([[1],[1],[1],[1]])
JacobianNumerical=JacobianFunction(testCaseVector)

存储在“JacobianNumerical”中的结果是一个 NumPy 数值数组(矩阵),可用于进一步计算。

示例:TensorFlow雅可比矩阵

%tensorflow_version 1.x
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGD
import numpy as np
import statsmodels.api as sm
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
from tqdm import tqdm
import tensorflow as tfnp.random.seed (245)
nobs =10000x1= np.random.normal(size=nobs ,scale=1)
x2= np.random.normal(size=nobs ,scale=1)
x3= np.random.normal(size=nobs ,scale=1)
x4= np.random.normal(size=nobs ,scale=1)
x5= np.random.normal(size=nobs ,scale=1)X= np.c_[np.ones((nobs ,1)),x1,x2,x3,x4,x5]y= np.cos(x1) + np.sin(x2) + 2*x3 + x4 + 0.01*x5 + np.random.normal(size=nobs , scale=0.01)LR=0.05Neuron_Out=1
Neuron_Hidden1=64
Neuron_Hidden2=32Activate_output='linear'
Activate_hidden='relu' Optimizer= SGD(lr=LR)
loss='mean_squared_error'from sklearn.model_selection import train_test_split
x_train , x_test , y_train , y_test = train_test_split(X, y, test_size =0.15, random_state =77)from tensorflow import set_random_seed
set_random_seed (245)sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())model_ANN= Sequential()model_ANN.add(Dense(Neuron_Hidden1, activation=Activate_hidden, input_shape=(6,), use_bias=True))
model_ANN.add(Dense(Neuron_Hidden2, activation=Activate_hidden, use_bias=True))model_ANN.add(Dense(Neuron_Out, activation=Activate_output,use_bias=True))
model_ANN.summary()model_ANN.compile(loss=loss, optimizer=Optimizer, metrics=['accuracy'])history_ANN=model_ANN.fit(
x_train, 
y_train, 
epochs=125)def jacobian_tensorflow(x):jacobian_matrix = []for m in range(Neuron_Out):grad_func = tf.gradients(model_ANN.output[:, m],model_ANN.input)gradients = sess.run(grad_func, feed_dict={model_ANN.input: x})  jacobian_matrix.append(gradients[0][0,:])return np.array(jacobian_matrix)jacobian_tensorflow(x_train)

👉更新:亚图跨际


http://www.ppmy.cn/server/110551.html

相关文章

请解释Java中的对象克隆机制,并讨论浅拷贝和深拷贝的区别。什么是Java中的封装?请举例说明如何通过封装实现数据隐藏和访问控制。

请解释Java中的对象克隆机制,并讨论浅拷贝和深拷贝的区别。 在Java中,对象克隆机制允许你创建一个已经存在的对象的一个完全相同的副本。这种机制主要依赖于Object类的clone()方法,但是需要注意的是,Object类中的clone()方法是受…

8.21

1、roles(角色)介绍 roles(⻆⾊): 就是通过分别将variables, tasks及handlers等放置于单独 的⽬录中,并可以便捷地调⽤它们的⼀种机制。 假设我们要写⼀个playbook来安装管理lamp环境,那么这个 playbook就会写很⻓。所以我们希望把这个很⼤的…

Redis:浅谈Redis集群的复制原理

一、Redis的集群方案 主从复制集群:手动切换的主从复制集群、带有哨兵的HA的主从复制集群。 分片集群:客户端实现路由索引的分片集群、使用中间件代理层的分片集群、Redis自身实现的Cluster分片集群。 二、Redis主从复制的原理 1、主从复制机制 当一…

量化面试:什么是蒙特卡罗模拟?

蒙特卡罗模拟(Monte Carlo Simulation)是一种利用随机抽样来解决复杂问题的统计学方法,通常用于评估不确定性对系统和过程的影响。在投资和量化交易中,蒙特卡罗模拟被广泛用于风险分析、资产定价、投资组合优化和预测等多个领域。…

强化学习实操入门随笔

碎碎念:经过思考,打通底层逻辑,我认为未来ai的功能是在沟通领域代替人,未来人-人模式(媒介是死的语言,比如看古人留下的文字、聊天的暂时不在)会变成人-ai替身-人模式(符合本人想法的…

龙芯+FreeRTOS+LVGL实战笔记(新)——00关于本专栏

本专栏是笔者另一个专栏《龙芯RT-ThreadLVGL实战笔记》的姊妹篇,主要的区别在于实时操作系统的不同,章节的安排和任务的推进保持一致,并对源码做了改进和优化,各位可以先到本人主页下去浏览另一专栏的博客列表(目前已撰…

【whisper】使用whisper实现语音转文字

whisper需要ffmpeg支持 官网下载ffmpeg https://www.gyan.dev/ffmpeg/builds/下载完毕后解压放到合适的位置 添加环境变量 在cmd中输入以下 ffmpeg -version出现下面结果代表成功 安装whisper pip install openai-whisper在vscode中运行 测试代码 import whisperif __n…

【C++ Primer Plus习题】8.7

问题: 解答: #include <iostream>using namespace std;template <typename T> T SumArray(T arr[], int n) {T sum arr[0] - arr[0];for (int i 0; i < n; i){sum arr[i];}return sum; }template <typename T> T SumArray(T *arr[], int n) {T sum *…

QIIME2宏基因组学教程--2024年春季莱顿和苏黎世教程

最近在qiime2论坛发现有人发布了qiime2宏基因组的教程&#xff0c;这里分享一下&#xff0c;只是alpha版本&#xff0c;不成熟&#xff0c;大家谨慎了解。qiime2的专用格式对于折腾宏基因组还是有点不妥的&#xff0c;个人观点&#xff0c;但是好在他能让分析标准化&#xff0c…

通义说【线性代数】线性组合

在数学中&#xff0c;线性组合&#xff08;linear combination&#xff09;是指从一组向量出发&#xff0c;通过这组向量与一组标量相乘并将结果向量相加所得到的新向量。简单来说&#xff0c;线性组合就是将向量按一定的权重&#xff08;标量&#xff09;相加。 假设我们有一…

RK3568 Android 11 蓝牙BluetoothA2dpSink 获取用于生成频谱的PCM

Android 中的 A2DP Sink A2DP Sink 在 Android 系统中主要用于 接收 其他蓝牙设备&#xff08;如手机、平板、电脑等&#xff09;发送过来的 高质量的立体声音频。简单来说&#xff0c;它让你的 Android 设备可以充当一个 蓝牙音箱 或 耳机 的角色。 核心功能&#xff1a; 接…

DAY8:DNS查询过程 | CDN的概念和功能 | Cookie和Session是什么?有什么区别?

目录 DNS查询过程 CDN的概念和功能 Cookie和Session是什么&#xff1f;有什么区别&#xff1f; Cookie和Session的概念 Cookie和Session的区别 DNS查询过程 DNS用来将主机名和域名转换为IP地址&#xff0c;其查询过程一般通过以下步骤&#xff1a; 本地DNS缓存检查&…

Excel下拉框多选

记录一下学会一个新的知识&#xff01; 两种方式 第一种方式&#xff1a;先在表格里写好需要的值&#xff0c;再在数据关联里面直接引入。 1.新建excel表格&#xff0c;输入下拉框需要的值。 2.点击——数据>有效性 3.选择——序列 4.数据来源——框住刚才写好的数据——…

25届应届网安面试,默认页面信息泄露

吉祥知识星球http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247485367&idx1&sn837891059c360ad60db7e9ac980a3321&chksmc0e47eebf793f7fdb8fcd7eed8ce29160cf79ba303b59858ba3a6660c6dac536774afb2a6330#rd 《网安面试指南》http://mp.weixin.qq.com/s?…

String的基本特;String的内存分配;字符串拼接操作;intern()的使用;经典面试题

目录 String的基本特性String的内存分配字符串拼接操作intern()的使用经典面试题 String的基本特性 创建的两种方式 String s “a” //字面量的定义方式 String s2 new String(“fd”) String类声明为final&#xff0c;不可被继承&#xff0c;实现了Serializable接口&#xf…

Nginx部署vue项目

在开始部署之前&#xff0c;我们先要准备好以下工作&#xff1a; 一个能跑通的Vue项目一个正常的、安装了nginx的服务器&#xff08;可以是本地电脑&#xff09;服务器上安装了Node.js&#xff08;nodejs官网&#xff1a;https://nodejs.org/en/ 可下载最新LTS版本并安装&…

从源码到产品:视频美颜SDK与直播美颜插件的开发详解

开发一款高效的视频美颜SDK与直播美颜插件&#xff0c;不仅需要深入理解图像处理技术&#xff0c;还需要考虑到性能优化、跨平台支持等多个方面的挑战。接下来&#xff0c;笔者将从源码开发的角度&#xff0c;详解视频美颜SDK与直播美颜插件的开发过程。 一、视频美颜SDK的核心…

c++ 154 引用

#include<iostream> using namespace std; //引用作为函数参数不需要初始化 void myswap(int *a,int *b) {int c 0;c *a;*a *b;*b c; } void main03() {int a 10;//引用语法 Type & name var;int& b a;b 100;//相当于把a改成100&#xff1b;printf("…

VL53L1CB TOF开发(2)----多区域扫描模式

VL53L1CB TOF开发.2--多区域扫描模式 概述视频教学样品申请源码下载硬件准备主要特点生成STM32CUBEMX串口配置IIC配置XSHUTGPIO1X-CUBE-TOF1堆栈设置函数说明初始化设置预设模式 (Preset mode)VL53L1_SetPresetModeVL53L1_SetDistanceMode时间预算单个ROI&#xff08;Single R…

无人机反制:低空安全综合管理平台技术详解

无人机反制技术中的低空安全综合管理平台&#xff0c;作为守护低空安全的重要工具&#xff0c;集成了多种先进的技术手段和管理功能&#xff0c;实现了对无人机等低空飞行器的全方位、无死角监控与反制。以下是对该技术平台的详细解析&#xff1a; 一、技术架构与核心功能 低…