矩阵的对角化以及矩阵的n次幂
在上一篇文章中,我记录了我所学习的矩阵的特征向量和特征值,所关注的是那些矩阵A作用于向量x后,方向不发生改变的x(仅有尺度的缩放)。
线性代数 --- 特征值与特征向量(上)-CSDN博客文章浏览阅读1.1k次,点赞9次,收藏21次。文章介绍了特征向量与特征值的基本概念,并给出了详细的说明图示和例子。至于如何求解矩阵的特征向量与特征值,我在下一篇文章中给出了说明。https://blog.csdn.net/daduzimama/article/details/136455766
此外,我也在另一篇文章中提到了一般矩阵的特征值与特征向量的求法。 线性代数 --- 特征值与特征向量(下)-CSDN博客文章浏览阅读1.3k次,点赞31次,收藏19次。本文介绍了求解一般矩阵的特征向量和特征值的具体方法。https://blog.csdn.net/daduzimama/article/details/136608493
这里,我打算记录一下矩阵对角化的概念,作为我的学习笔记。既然已经知道了如何求出矩阵的特征向量和特征值现,那么找到这些东西有什么用呢?
假设一个n维方阵A经过计算后得到n个线性无关的特征向量x1,x2...,xn,对应n个λ1,λ2...,λn。我们有:
现在,我们把这些特征向量都放到一个矩阵中,合成一个新的矩阵X。看看矩阵A乘以矩阵X后会怎么样。首先,我们按照如下方式构建一个新矩阵X,我们称之为特征向量矩阵(Eigen-vector matrix)。因为该矩阵的每一列都是一个特征向量,所以用大写的X表示:
令A乘以X,根据矩阵的乘法原则,矩阵A与矩阵X的乘法可以看成是把矩阵X各列看成权重的线性组合的结果(这句话不好懂,可以看看下面的图示)
得到:
注意,之前用特征向量构造的新矩阵X,又再一次出现了。与此同时,他的旁边出现了一个新矩阵,这是一个对角矩阵,主对角线上的元素全是特征值λ。这也是一个新矩阵,称之为特征值矩阵(Eigen-value matrix)。因其主对角线上的元素都是特征值,所以用大写的(即,大写的λ)表示:
最终得到:
The Key Equation
又因为,我之前所构建的特征向量矩阵X是由n个线性无关的特征向量组成的,列与列之间线性无关。因此,矩阵X是可逆的。现在我们把等式两边同时左乘一个X的逆矩阵,即完成了矩阵A的对角化:
(对角化公式)
反过来,如果把等式两边同时右乘X的逆矩阵,就得到了矩阵A的又一种分解公式(之前学过的分解有基于高斯消元的LU分解,基于gram-schmidt正交化的QR分解):
(矩阵A的分解公式)
注意,这一切操作都基于一个前提:矩阵A有n个线性无关的特征向量
什么样的矩阵可可以角化?
当n维方阵A有n个不同的特征值时,矩阵A才能用上述方式对角化。因为,如果A有n个不同的特征值,那么一定对应有n个相互独立的特征向量。但反过来就不一定成立,比如说单位矩阵有n个不同的特征向量,但他的特征值都是1。
(全文完)
--- 作者,松下J27
参考文献(鸣谢):
1,Lec22_对角化和矩阵乘幂_哔哩哔哩_bilibili
2,《Introduction to Linear algebra》--- Gilbert strang,page 304
(配图与本文无关)
版权声明:所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。 ----松下J27