机器学习-10-神经网络python实现-从零开始

server/2025/1/1 7:56:20/

文章目录

总结

本系列是机器学习课程的系列课程,主要介绍基于python实现神经网络

参考

BP神经网络python实现(详细)

本文来源原文链接:https://blog.csdn.net/weixin_66845445/article/details/133828686

用Python从0到1实现一个神经网络(附代码)!

python神经网络编程代码https://gitee.com/iamyoyo/makeyourownneuralnetwork.git

本门课程的目标

完成一个特定行业的算法应用全过程:

懂业务+会选择合适的算法+数据处理+算法训练+算法调优+算法融合
+算法评估+持续调优+工程化接口实现

机器学习定义

关于机器学习的定义,Tom Michael Mitchell的这段话被广泛引用:
对于某类任务T性能度量P,如果一个计算机程序在T上其性能P随着经验E而自我完善,那么我们称这个计算机程序从经验E中学习
在这里插入图片描述

从零构建神经网络

手写数据集MNIST介绍

mnist_dataset

MNIST数据集是一个包含大量手写数字的集合。 在图像处理领域中,它是一个非常受欢迎的数据集。 经常被用于评估机器学习算法的性能。 MNIST是改进的标准与技术研究所数据库的简称。 MNIST 包含了一个由 70,000 个 28 x 28 的手写数字图像组成的集合,涵盖了从0到9的数字。

本文通过神经网络基于MNIST数据集进行手写识别。

代码读取数据集MNIST

导入库

python">import numpy
import matplotlib.pyplot

读取mnist_train_100.csv

python"># open the CSV file and read its contents into a list
data_file = open("mnist_dataset/mnist_train_100.csv", 'r')
data_list = data_file.readlines()
data_file.close()

查看数据集的长度

python"># check the number of data records (examples)
len(data_list)
# 输出为 100

查看一条数据,这个数据是手写数字的像素值

python"># show a dataset record
# the first number is the label, the rest are pixel colour values (greyscale 0-255)
data_list[1]

输出为:
在这里插入图片描述
需要注意的是,这个字符串的第一个字为真实label,比如

python">data_list[50]

输出为:
在这里插入图片描述

这个输出看不懂,因为这是一个很长的字符串,我们对其进行按照逗号进行分割,然后输出为28*28的,就能看出来了

python"># take the data from a record, rearrange it into a 28*28 array and plot it as an image
all_values = data_list[50].split(',')
num=0
for i in all_values[1:]:num = num +1print("%-3s"%(i),end=' ')if num==28:num = 0print('',end='\n')

输出为:
在这里插入图片描述

通过用图片的方式查看

python"># take the data from a record, rearrange it into a 28*28 array and plot it as an image
all_values = data_list[50].split(',')
image_array = numpy.asfarray(all_values[1:]).reshape((28,28))
matplotlib.pyplot.imshow(image_array, cmap='Greys', interpolation='None')

输出为:
在这里插入图片描述

这个像素值为0-255,对其进行归一化操作

python"># scale input to range 0.01 to 1.00
scaled_input = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# print(scaled_input)
scaled_input

输出为:
在这里插入图片描述

构建一个包含十个输出的标签

python">#output nodes is 10 (example)
onodes = 10
targets = numpy.zeros(onodes) + 0.01
targets[int(all_values[0])] = 0.99
# print(targets)
targets

输出为:
在这里插入图片描述

神经网络实现

导入库

python">import numpy
# scipy.special for the sigmoid function expit()
import scipy.special
# library for plotting arrays
import matplotlib.pyplot

神经网络实现

python"># neural network class definition
# 神经网络类定义
class neuralNetwork:# initialise the neural network# 初始化神经网络def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):# set number of nodes in each input, hidden, output layer# 设置每个输入、隐藏、输出层的节点数self.inodes = inputnodesself.hnodes = hiddennodesself.onodes = outputnodes# link weight matrices, wih and who# weights inside the arrays are w_i_j, where link is from node i to node j in the next layer# w11 w21# w12 w22 etc # 链接权重矩阵,wih和who# 数组内的权重w_i_j,链接从节点i到下一层的节点j# w11 w21# w12 w22 等等self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))# learning rate 学习率self.lr = learningrate# activation function is the sigmoid function# 激活函数是sigmoid函数self.activation_function = lambda x: scipy.special.expit(x)pass# train the neural network# 训练神经网络def train(self, inputs_list, targets_list):# convert inputs list to 2d array# 将输入列表转换为2d数组inputs = numpy.array(inputs_list, ndmin=2).Ttargets = numpy.array(targets_list, ndmin=2).T# calculate signals into hidden layer# 计算输入到隐藏层的信号hidden_inputs = numpy.dot(self.wih, inputs)# calculate the signals emerging from hidden layer# 计算从隐藏层输出的信号hidden_outputs = self.activation_function(hidden_inputs)# calculate signals into final output layer# 计算最终输出层的信号final_inputs = numpy.dot(self.who, hidden_outputs)# calculate the signals emerging from final output layer# 计算从最终输出层输出的信号final_outputs = self.activation_function(final_inputs)# output layer error is the (target - actual)# 输出层误差是(目标 - 实际)output_errors = targets - final_outputs# hidden layer error is the output_errors, split by weights, recombined at hidden nodes# 隐藏层误差是输出层误差,按权重分解,在隐藏节点重新组合hidden_errors = numpy.dot(self.who.T, output_errors) # update the weights for the links between the hidden and output layers# 更新隐藏层和输出层之间的权重self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))# update the weights for the links between the input and hidden layers# 更新输入层和隐藏层之间的权重self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))pass# query the neural network# 查询神经网络def query(self, inputs_list):# convert inputs list to 2d array# 将输入列表转换为2d数组inputs = numpy.array(inputs_list, ndmin=2).T# calculate signals into hidden layer# 计算输入到隐藏层的信号hidden_inputs = numpy.dot(self.wih, inputs)# calculate the signals emerging from hidden layer# 计算从隐藏层输出的信号hidden_outputs = self.activation_function(hidden_inputs)# calculate signals into final output layer# 计算最终输出层的信号final_inputs = numpy.dot(self.who, hidden_outputs)# calculate the signals emerging from final output layer# 计算从最终输出层输出的信号final_outputs = self.activation_function(final_inputs)return final_outputs

定义参数,并初始化神经网络

python"># number of input, hidden and output nodes
input_nodes = 784
hidden_nodes = 200
output_nodes = 10# learning rate
learning_rate = 0.1# create instance of neural network
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
n # <__main__.neuralNetwork at 0x2778590e5e0>

查看数据集

python"># load the mnist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()
len(training_data_list) # 60001
# 其中第1行为列名 ,后面需要去掉,只保留后60000条

开始训练,该步骤需要等待一会,才能训练完成

python"># train the neural network
# 训练神经网络
# epochs is the number of times the training data set is used for training
# epochs次数,循环训练5次
epochs = 5for e in range(epochs):# go through all records in the training data set# 每次取60000条数据,剔除列名for record in training_data_list[1:]:# split the record by the ',' commas# 用逗号分割all_values = record.split(',')# scale and shift the inputs# 对图像的像素值进行归一化操作inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01# create the target output values (all 0.01, except the desired label which is 0.99)# 创建一个包含十个输出的向量,初始值为0.01targets = numpy.zeros(output_nodes) + 0.01# all_values[0] is the target label for this record# 对 label的 位置设置为0.99targets[int(all_values[0])] = 0.99# 开始训练n.train(inputs, targets)passpass

查看训练后的权重

python">n.who.shape # (10, 200)
n.who

输出为:
在这里插入图片描述

python">n.wih.shape # ((200, 784)
n.wih

输出为:
在这里插入图片描述

查看测试集

python"># load the mnist test data CSV file into a list
test_data_file = open("mnist_dataset/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
len(test_data_list) # 10001
# 其中第1行为列名 ,后面需要去掉,只保留后10000条

预测测试集

python"># test the neural network
# 测试网络
# scorecard for how well the network performs, initially empty
# 计算网络性能,初始为空
scorecard = []# go through all the records in the test data set
# 传入所有的测试集
for record in test_data_list[1:]:# split the record by the ',' commas# 使用逗号分割all_values = record.split(',')# correct answer is first value# 获取当前的测试集的labelcorrect_label = int(all_values[0])# scale and shift the inputs# 归一化操作inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01# query the network# 对测试集进行预测outputs = n.query(inputs)# the index of the highest value corresponds to the label# 获取输出中最大的概率的位置label = numpy.argmax(outputs)# append correct or incorrect to list# 按照预测的正确与否分别填入1和0if (label == correct_label):# network's answer matches correct answer, add 1 to scorecard# 答案匹配正确,输入1scorecard.append(1)else:# network's answer doesn't match correct answer, add 0 to scorecard# 答案不匹配,输入0scorecard.append(0)passpass

计算网络性能

python"># calculate the performance score, the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)
# performance =  0.9725

输出为:

performance = 0.9725

测试手写的图片

导入库

python"># helper to load data from PNG image files
import imageio.v3
# glob helps select multiple files using patterns
import glob

定义数据集列表

python"># our own image test data set
our_own_dataset = []

读取多个数据

python"># glob.glob获取一个可编历对象,使用它可以逐个获取匹配的文件路径名。glob.glob同时获取所有的匹配路径
for image_file_name in glob.glob('my_own_images/2828_my_own_?.png'):# 输出 匹配到的文件print ("loading ... ", image_file_name)# use the filename to set the correct label# 文件名中包含了文件的正确标签label = int(image_file_name[-5:-4])# load image data from png files into an array# 把 图片转换为 文本img_array = imageio.v3.imread(image_file_name, mode='F')# reshape from 28x28 to list of 784 values, invert values# 把28*28的矩阵转换为 784和1维img_data  = 255.0 - img_array.reshape(784)# then scale data to range from 0.01 to 1.0# 对数据进行归一化操作,最小值为0.01img_data = (img_data / 255.0 * 0.99) + 0.01print(numpy.min(img_data))print(numpy.max(img_data))# append label and image data  to test data set# 把 laebl和图片拼接起来record = numpy.append(label,img_data)print(record.shape)# 把封装好的 一维存储在列表中our_own_dataset.append(record)pass

读取的数据如下:

在这里插入图片描述
输出为,
在这里插入图片描述

查看手写的图片

python">matplotlib.pyplot.imshow(our_own_dataset[0][1:].reshape(28,28), cmap='Greys', interpolation='None')

输出为:
在这里插入图片描述

输出对应的像数值

python"># print(our_own_dataset[0])
print(our_own_dataset[0][0],"\n",our_own_dataset[0][1:20])

输出如下:
在这里插入图片描述

测试手写数据效果

python">own_list = []
for i in our_own_dataset:correct_label = i[0]img_data = i[1:]# query the networkoutputs = n.query(img_data)
#     print ('outputs预测',outputs)# the index of the highest value corresponds to the labellabel = numpy.argmax(outputs)print('真实',correct_label,"network says ", label)if (label == correct_label):# network's answer matches correct answer, add 1 to scorecardown_list.append(1)else:# network's answer doesn't match correct answer, add 0 to scorecardown_list.append(0)print("own_list",own_list)

输出为:
在这里插入图片描述

带有反向查询的神经网络实现

该部分代码与 从零构建神经网络大多类似,代码如下:

导入库

python">import numpy
# scipy.special for the sigmoid function expit(), and its inverse logit()
import scipy.special
# library for plotting arrays
import matplotlib.pyplot

定义带有反向查询的神经网络

python"># neural network class definition
# 神经网络类定义
class neuralNetwork:# initialise the neural network# 初始化神经网络def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):# set number of nodes in each input, hidden, output layer# 设置每个输入、隐藏、输出层的节点数self.inodes = inputnodesself.hnodes = hiddennodesself.onodes = outputnodes# link weight matrices, wih and who# weights inside the arrays are w_i_j, where link is from node i to node j in the next layer# w11 w21# w12 w22 etc # 链接权重矩阵,wih和who# 数组内的权重w_i_j,链接从节点i到下一层的节点j# w11 w21# w12 w22 等等self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))# learning rate 学习率self.lr = learningrate# activation function is the sigmoid function# 激活函数是sigmoid函数self.activation_function = lambda x: scipy.special.expit(x)self.inverse_activation_function = lambda x: scipy.special.logit(x)pass# train the neural network# 训练神经网络def train(self, inputs_list, targets_list):# convert inputs list to 2d array# 将输入列表转换为2d数组inputs = numpy.array(inputs_list, ndmin=2).Ttargets = numpy.array(targets_list, ndmin=2).T# calculate signals into hidden layer# 计算输入到隐藏层的信号hidden_inputs = numpy.dot(self.wih, inputs)# calculate the signals emerging from hidden layer# 计算从隐藏层输出的信号hidden_outputs = self.activation_function(hidden_inputs)# calculate signals into final output layer# 计算最终输出层的信号final_inputs = numpy.dot(self.who, hidden_outputs)# calculate the signals emerging from final output layer# 计算从最终输出层输出的信号final_outputs = self.activation_function(final_inputs)# output layer error is the (target - actual)# 输出层误差是(目标 - 实际)output_errors = targets - final_outputs# hidden layer error is the output_errors, split by weights, recombined at hidden nodes# 隐藏层误差是输出层误差,按权重分解,在隐藏节点重新组合hidden_errors = numpy.dot(self.who.T, output_errors) # update the weights for the links between the hidden and output layers# 更新隐藏层和输出层之间的权重self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))# update the weights for the links between the input and hidden layers# 更新输入层和隐藏层之间的权重self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))pass# query the neural network# 查询神经网络def query(self, inputs_list):# convert inputs list to 2d array# 将输入列表转换为2d数组inputs = numpy.array(inputs_list, ndmin=2).T# calculate signals into hidden layer# 计算输入到隐藏层的信号hidden_inputs = numpy.dot(self.wih, inputs)# calculate the signals emerging from hidden layer# 计算从隐藏层输出的信号hidden_outputs = self.activation_function(hidden_inputs)# calculate signals into final output layer# 计算最终输出层的信号final_inputs = numpy.dot(self.who, hidden_outputs)# calculate the signals emerging from final output layer# 计算从最终输出层输出的信号final_outputs = self.activation_function(final_inputs)return final_outputs# backquery the neural network# we'll use the same termnimology to each item, # eg target are the values at the right of the network, albeit used as input# eg hidden_output is the signal to the right of the middle nodes# 反向 查询def backquery(self, targets_list):# transpose the targets list to a vertical array# 将目标列表转置为垂直数组final_outputs = numpy.array(targets_list, ndmin=2).T# calculate the signal into the final output layer# 计算最终输出层的输入信号final_inputs = self.inverse_activation_function(final_outputs)# calculate the signal out of the hidden layer# 计算隐藏层的输出信号hidden_outputs = numpy.dot(self.who.T, final_inputs)# scale them back to 0.01 to .99# 将隐藏层的输出信号缩放到0.01到0.99之间hidden_outputs -= numpy.min(hidden_outputs)hidden_outputs /= numpy.max(hidden_outputs)hidden_outputs *= 0.98hidden_outputs += 0.01# calculate the signal into the hidden layer# 计算隐藏层的输入信号hidden_inputs = self.inverse_activation_function(hidden_outputs)# calculate the signal out of the input layer# 计算输入层的输出信号inputs = numpy.dot(self.wih.T, hidden_inputs)# scale them back to 0.01 to .99# 将输入层的输出信号缩放到0.01到0.99之间inputs -= numpy.min(inputs)inputs /= numpy.max(inputs)inputs *= 0.98inputs += 0.01return inputs

初始化神经网络

python"># number of input, hidden and output nodes
# 定义网络的输入 隐藏 输出节点数量
input_nodes = 784
hidden_nodes = 200
output_nodes = 10# learning rate
# 学习率
learning_rate = 0.1# create instance of neural network
# 实例化网络
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)

加载数据集

python"># load the mnist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()

训练模型

python"># train the neural network# epochs is the number of times the training data set is used for training
epochs = 5for e in range(epochs):print("\n epochs------->",e)num = 0# go through all records in the training data setdata_list = len(training_data_list[1:])for record in training_data_list[1:]:# split the record by the ',' commasall_values = record.split(',')# scale and shift the inputsinputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01# create the target output values (all 0.01, except the desired label which is 0.99)targets = numpy.zeros(output_nodes) + 0.01# all_values[0] is the target label for this recordtargets[int(all_values[0])] = 0.99n.train(inputs, targets)num +=1 if num %500==0:print("\r epochs {} 当前进度为 {}".format(e,num/data_list),end="")passpass

输出为:

epochs-------> 0
epochs 0 当前进度为 1.091666666666666744
epochs-------> 1
epochs 1 当前进度为 1.091666666666666744
epochs-------> 2
epochs 2 当前进度为 1.091666666666666744
epochs-------> 3
epochs 3 当前进度为 1.091666666666666744
epochs-------> 4
epochs 4 当前进度为 1.091666666666666744

加载测试数据

python"># load the mnist test data CSV file into a list
test_data_file = open("mnist_dataset/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()

加载测试数据

python"># test the neural network# scorecard for how well the network performs, initially empty
scorecard = []# go through all the records in the test data set
for record in test_data_list[1:]:# split the record by the ',' commasall_values = record.split(',')# correct answer is first valuecorrect_label = int(all_values[0])# scale and shift the inputsinputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01# query the networkoutputs = n.query(inputs)# the index of the highest value corresponds to the labellabel = numpy.argmax(outputs)# append correct or incorrect to listif (label == correct_label):# network's answer matches correct answer, add 1 to scorecardscorecard.append(1)else:# network's answer doesn't match correct answer, add 0 to scorecardscorecard.append(0)passpass

计算模型性能

python"># calculate the performance score, the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)
# performance =  0.9737

根据模型反向生成图片

python"># run the network backwards, given a label, see what image it produces# label to test
label = 0
# create the output signals for this label
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[label] = 0.99
print(targets)# get image data
image_data = n.backquery(targets)# plot image data
matplotlib.pyplot.imshow(image_data.reshape(28,28), cmap='Greys', interpolation='None')

输出为:
在这里插入图片描述


http://www.ppmy.cn/server/10145.html

相关文章

2024免费专为Mac用户设计的清理和优化工具CleanMyMac X

CleanMyMac X是一款专为Mac用户设计的清理和优化工具。以下是对CleanMyMac X的详细介绍&#xff1a; 一、主要功能 系统清理&#xff1a;CleanMyMac X能够智能扫描Mac的磁盘空间&#xff0c;识别并清理各种垃圾文件&#xff0c;这些垃圾文件包括重复文件、无用的语言安装包、i…

PHP是什么以及它的主要用途是什么?

PHP是什么以及它的主要用途是什么&#xff1f; PHP&#xff0c;全称Hypertext Preprocessor&#xff0c;是一种通用的开源脚本语言。它尤其适用于Web开发&#xff0c;并可嵌入HTML中。PHP最初的设计目标是创建动态生成的网页&#xff0c;随着其不断的发展&#xff0c;现在的PH…

出海不出局 | 小游戏引爆高线市场,新竞争态势下的应用出海攻略

出海小游戏&#xff0c;出息了&#xff01; 根据 Sensor Tower 近期发布的“2024 年 3 月中国手游收入 TOP30”榜单&#xff0c;出海小游戏在榜单中成了亮眼的存在。 其中&#xff0c;《菇勇者传说》3 月海外收入环比增长 63%&#xff0c;斩获出海手游收入增长冠军&#xff0c…

回车符和换行符的区别

回车符&#xff08;Carriage Return&#xff0c;简称CR&#xff0c;ASCII码为13&#xff0c;转义字符\r&#xff09;和换行符&#xff08;Line Feed&#xff0c;简称LF&#xff0c;ASCII码为10&#xff0c;转义字符\n&#xff09;。 这两个东东的区别来源于打字机。 在计算机…

Opencv_4_图像像素的读写操作

1&#xff09;opencv.hpp 头文件&#xff1a; #pragma once #include <opencv.hpp> using namespace std; #include <opencv.hpp> using namespace cv; using namespace std; class ColorInvert{ public : void pixel_visit(Mat& image); }; 2&#xff0…

7-23 币值转换 【C++】

有点颠的一个测试点&#xff0c;记录一下 测试点二&#xff0c;是看了一些AC代码才写出来的&#xff0c;至于原理我也不知道&#xff0c;就当多见识一点题目测试点的可能性吧 #include<iostream> #include<cstring> using namespace std; int main() {string a;ch…

工作后的自我介绍

您好&#xff0c;我叫Li&#xff0c;毕业于双一流**大学软件工程专业。 在大学期间通过四级&#xff0c;获得计算机C语言二级证书、科技立项奖&#xff08;词频统计&#xff09;、国家励志奖学金、优秀学生奖学金、优秀团干部、新生奖学金等。在校主修的课程有C、Java、数据结…

【Qt】修改QSerialPort支持的波特率

1、问题描述 QSerialPort是Qt操作串口的子模块,默认的支持的波特率最大为115200. enum BaudRate {Baud1200 = 1200,Baud2400 = 2400,Baud4800 = 4800,Baud9600 = 9600,Baud19200 = 19200,Baud38400