SPI总线通讯协议

ops/2024/10/18 16:47:59/

文章目录

SPI_1">SPI

SPI:串行外围设备接口(Serial peripheral interface),一种高速, 全双工、同步的通信总线。

SPI使用4条线通信:
MISO:主设备数据输入,从设备数据输出,从设备发送数据。
MOSI:主设备数据输出,从设备数据输入,主设备发送数据。
SCLK:时钟信号,由主设备产生,用于同步数据传输。
CS:从设备片选信号,由主设备控制,选择需要通信的从设备。
在这里插入图片描述
时钟频率:
Nor Flash W25Q128JV:133MHZ
EEPROM 25AA02E48L:10MHZ

外设的读操作和写操作是同步完成的。
主设备和从设备都有一个串行移位寄存器,主设备写入一个字节到串行寄存器来发起一次传输,串行移位寄存器通过MOSI信号线将字节传送给从机,从机也将自己的串行移位寄存器中的内容通过MISO信号线返回给主机。这样,两个移位寄存器中的内容就被交换。
在这里插入图片描述
只进行写操作,主机需要忽略接收到的字节。
只进行读操作,主机必须发送一个空字节来引发从机的传输。
有三种连接模式:单主单从模式、单主多从模式、菊花链模式。

SPI时钟的相位极性的不同组合
一共有4种不同的触发传输方式
CPOL控制电平状态。为1时,空闲状态为高电平;为0时,空闲状态为低电平。
CPHA控制相位。
为1时,第二个边沿触发。CPOL为1时,上升沿触发;CPOL为0时,下降沿触发。
为0时,第一个边沿触发。CPOL为1时,下降沿触发;CPOL为0时,上升沿触发。
在这里插入图片描述
在这里插入图片描述

SPI_29">QSPI

请添加图片描述
在这里插入图片描述
CS下降沿是能后,一般等SCLK一个时钟周期,等待其时钟上升沿时。
1、发送命令状态,用来发送8-bit的命令码。用来确定使用单线、双线、四线模式。
2、发送24位地址,由于四线同时进行,因此缩短为6个时钟周期。
3、M0~M7 位的作用是配置 QSPI 的工作模式,包括数据传输方向、时钟参数、数据位宽和速率等。
4、Dummy 周期通常用于确保数据传输的稳定性和正确性,为了调整时序而插入的虚拟字节或周期。
5、发送或接收数据,四线制,一个周期能够接收4位数据,效率提升4倍。

下面以STM32F407和外部flash(W25Q128)SPI通信传输数据为例

SPI_42">SPI配置

//以下是SPI模块的初始化代码,配置成主机模式 						  
//SPI口初始化
//这里针是对SPI1的初始化
void SPI1_Init(void)
{	 GPIO_InitTypeDef  GPIO_InitStructure;SPI_InitTypeDef  SPI_InitStructure;RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);//使能GPIOB时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);//使能SPI1时钟//GPIOFB3,4,5初始化设置GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5;//PB3~5复用功能输出	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHzGPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIO_PinAFConfig(GPIOB,GPIO_PinSource3,GPIO_AF_SPI1); //PB3复用为 SPI1GPIO_PinAFConfig(GPIOB,GPIO_PinSource4,GPIO_AF_SPI1); //PB4复用为 SPI1GPIO_PinAFConfig(GPIOB,GPIO_PinSource5,GPIO_AF_SPI1); //PB5复用为 SPI1//这里只针对SPI口初始化RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1,ENABLE);//复位SPI1RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1,DISABLE);//停止复位SPI1SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;  //设置SPI单向或者双向的数据模式:SPI设置为双线双向全双工SPI_InitStructure.SPI_Mode = SPI_Mode_Master;		//设置SPI工作模式:设置为主SPISPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;		//设置SPI的数据大小:SPI发送接收8位帧结构SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;		//串行同步时钟的空闲状态为高电平SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;	//串行同步时钟的第二个跳变沿(上升或下降)数据被采样SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;		//NSS信号由硬件(NSS管脚)还是软件(使用SSI位)管理:内部NSS信号有SSI位控制//SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256;		//定义波特率预分频的值:波特率预分频值为256SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;	//指定数据传输从MSB位还是LSB位开始:数据传输从MSB位开始SPI_InitStructure.SPI_CRCPolynomial = 7;	//CRC值计算的多项式SPI_Init(SPI1, &SPI_InitStructure);  //根据SPI_InitStruct中指定的参数初始化外设SPIx寄存器SPI_Cmd(SPI1, ENABLE); //使能SPI外设SPI1_ReadWriteByte(0xff);//启动传输		 
} 

SPI_87">SPI读写一个字节

//SPI1 读写一个字节
//TxData:要写入的字节
//返回值:读取到的字节
u8 SPI1_ReadWriteByte(u8 TxData)
{		 			 while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET){}//等待发送区空  SPI_I2S_SendData(SPI1, TxData); //通过外设SPIx发送一个byte  数据while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET){} //等待接收完一个byte  return SPI_I2S_ReceiveData(SPI1); //返回通过SPIx最近接收的数据			    
}

W25Q128初始化

//4Kbytes为一个Sector
//16个扇区为1个Block
//W25Q128
//容量为16M字节,共有256个Block,4096个Sector //初始化SPI FLASH的IO口
void W25QXX_Init(void)
{ GPIO_InitTypeDef  GPIO_InitStructure;RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);//使能GPIOB时钟RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG, ENABLE);//使能GPIOG时钟//GPIOB14GPIO_InitStructure.GPIO_Pin = GPIO_Pin_14;//PB14  片选引脚GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;//输出GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;//推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;//100MHzGPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;//上拉GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;//PG7GPIO_Init(GPIOG, &GPIO_InitStructure);//初始化GPIO_SetBits(GPIOG,GPIO_Pin_7);//PG7输出1,防止NRF干扰SPI FLASH的通信  SPI上还挂载着NRF 不止flash一个设备W25QXX_CS=1;			//SPI FLASH不选中SPI1_Init();		   			//初始化SPI//SPI1_SetSpeed(SPI_BaudRatePrescaler_4);		//设置为21M时钟
//SPI1速度设置函数
//SPI速度=fAPB2/分频系数
//@ref SPI_BaudRate_Prescaler:SPI_BaudRatePrescaler_2~SPI_BaudRatePrescaler_256  
//fAPB2时钟一般为84Mhz:
//void SPI1_SetSpeed(u8 SPI_BaudRatePrescaler)
//{//assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_BaudRatePrescaler_4));//判断有效性SPI1->CR1&=0XFFC7;//位3-5清零,用来设置波特率SPI1->CR1|=SPI_BaudRatePrescaler_4;	//设置SPI1速度 SPI_Cmd(SPI1,ENABLE); //使能SPI1//} W25QXX_TYPE=W25QXX_ReadID();	//读取FLASH ID.
} 

SPI_FLASH_150">读取SPI FLASH

//在指定地址开始读取指定长度的数据
//pBuffer:数据存储区
//ReadAddr:开始读取的地址(24bit)
//NumByteToRead:要读取的字节数(最大65535)
void W25QXX_Read(u8* pBuffer,u32 ReadAddr,u16 NumByteToRead)   
{ u16 i;   										    W25QXX_CS=0;                            //使能器件   SPI1_ReadWriteByte(W25X_ReadData);         //发送读取命令  芯片手册有指令SPI1_ReadWriteByte((u8)((ReadAddr)>>16));  // 第一次是高八位 发送24bit地址  16M字节编址的地址为24位即可SPI1_ReadWriteByte((u8)((ReadAddr)>>8));   //u8强制类型转换后取中八位SPI1_ReadWriteByte((u8)ReadAddr);   			//低八位地址for(i=0;i<NumByteToRead;i++){ pBuffer[i]=SPI1_ReadWriteByte(0XFF);   //循环读数  SPI发送0xFF 并接收外设的数据}W25QXX_CS=1;  				    	      
}  

SPI_FLASH_173">写SPI FLASH

//在指定地址开始写入指定长度的数据
//该函数带擦除操作!
//pBuffer:数据存储区
//WriteAddr:开始写入的地址(24bit)						
//NumByteToWrite:要写入的字节数(最大65535)   
u8 W25QXX_BUFFER[4096];		 
void W25QXX_Write(u8* pBuffer,u32 WriteAddr,u16 NumByteToWrite)   
{ u32 secpos;u16 secoff;u16 secremain;	   u16 i;    u8 * W25QXX_BUF;	  W25QXX_BUF=W25QXX_BUFFER;	 secpos=WriteAddr/4096;//扇区地址    找到是哪一个扇区 扇区数=256块*16个扇区secoff=WriteAddr%4096;//在扇区内的偏移  每个扇区4096个地址 求余数找到偏移量secremain=4096-secoff;//扇区剩余空间大小   //printf("ad:%X,nb:%X\r\n",WriteAddr,NumByteToWrite);//测试用if(NumByteToWrite<=secremain)secremain=NumByteToWrite;//若写入的字节数比扇区剩余空间小  则赋值while(1) {	W25QXX_Read(W25QXX_BUF,secpos*4096,4096);//事先读出整个扇区的内容保存到W25QXX_BUF中//编程即写数据,由于Flash的特性,只能从1编程0,所以写数据之前Flash里面的数据不是0xFF就必须先擦除,然后才能写数据。//擦除即将Flash里面的数据恢复为0xFF的过程。for(i=0;i<secremain;i++)//校验数据  	在读出的扇区的数组(复制的那一份)W25QXX_BUF校验是否有数据{if(W25QXX_BUF[secoff+i]!=0XFF)break;//若数据不是默认0xFF(全为1)则证明有数据,需要擦除  	  }if(i<secremain)//需要擦除{W25QXX_Erase_Sector(secpos);//擦除这个扇区for(i=0;i<secremain;i++)	   //复制{W25QXX_BUF[i+secoff]=pBuffer[i];	  }W25QXX_Write_NoCheck(W25QXX_BUF,secpos*4096,4096);//写入整个扇区  }//不需要擦除else W25QXX_Write_NoCheck(pBuffer,WriteAddr,secremain);//写已经擦除了的,直接写入扇区剩余区间. 				   if(NumByteToWrite==secremain)break;//写入结束了(跨扇区)else//写入未结束{secpos++;//扇区地址增1secoff=0;//偏移位置为0 	 pBuffer+=secremain;  //指针偏移WriteAddr+=secremain;//写地址偏移	   NumByteToWrite-=secremain;				//字节数递减if(NumByteToWrite>4096)secremain=4096;	//下一个扇区还是写不完else secremain=NumByteToWrite;			//下一个扇区可以写完了}	 }	 
}

http://www.ppmy.cn/ops/6431.html

相关文章

Llama3本地部署及API接口本地调试,15分钟搞定最新Meta AI开源大模型本地Windows电脑部署

文章目录 目的操作难度等级15分钟本地Windows电脑部署Llama3 开源大模型1、下载安装Ollama2、使用Ollama的命令下载Llama3模型文件3、使用Llama3聊天对话功能4、本地Llama3 API接口调用 目的 你知道国内大模型多少是基于Llama2改造的&#xff0c;你就知道Llama模型有多厉害了&…

pt-archiver归档表数据

一 介绍 pt-archiver的原理主要是根据定义的时间间隔(sleep参数)&#xff0c;扫描要清理的数据表。它按照指定的规则分批(limit参数)将查询到的记录转移到其他表或文件中&#xff0c;发现它是按主键去删除的表数据&#xff0c;对数据库影响很小。 二 语法 /bin/pt-archiver …

五分钟手撕“三大特性”<继承>(下)

目录 一、protected 关键字 二、继承方式 三、final 关键字 四、子类的构造方法 五、this和super &#xff08;一&#xff09;相同点&#xff1a; &#xff08;二&#xff09;不同点&#xff1a; 六、代码块的执行先后 一、protected 关键字 在类与对象中提到过&…

基于双向长短期神经网络bilstm的径流量预测,基于gru神经网络的径流量预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络bilstm的径流量预测,基于gru神经网络的径流量预测 完整代码:基于双向长短期神经网络bilstm的径流量预测,基于gru神经网络的径流量预测(代码完整,数据齐全)资源-CSDN文库 https://dow…

SpringMVC 常用注解介绍

Spring MVC 常用注解介绍 文章目录 Spring MVC 常用注解介绍准备1. RequestMapping1.1 介绍2.2 注解使用 2. 请求参数2.1 传递单个参数2.2 传递多个参数2.3 传递对象2.4 传递数组 3. RequestParam3.1 注解使用3.2 传入集合 4. RequestBody5. PathVariable6. RequestPart7. Rest…

学习在Debian系统上安装Shadowsocks教程

学习在Debian系统上安装Shadowsocks教程 安装shadowsocks-libev及其所需的依赖启动Shadowsocks服务&#xff1a;如果你想要通过代理本地流量&#xff0c;你可以使用ss-local&#xff1a;启动并设置ss-local&#xff1a;查看状态本地连接 安装shadowsocks-libev及其所需的依赖 …

(vue)el-select选择框加全选/清空/反选

(vue)el-select选择框加全选/清空/反选 <el-form-item label"批次"><el-selectv-model"formInline.processBatch"multiplecollapse-tagsfilterableplaceholder"请选择"style"width: 250px"no-data-text"请先选择企业、日…

特殊统计SQL实例分析:活动答题记录表的多维度统计

特殊统计SQL实例分析&#xff1a;活动答题记录表的多维度统计 引言数据表结构应用场景与SQL查询实例问题一&#xff1a;活动7天&#xff0c;每人每天有3次机会&#xff0c;每次机会答5道题&#xff0c;每5道题一个批次&#xff0c;答对有状态status为Y。现在需要获取活动期间每…