TH方程学习(1)

ops/2024/10/22 5:14:58/

一、背景介绍

根据CW方程的学习,CW方程的限制条件为圆轨道,不考虑摄动,二者距离相对较小。TH方程则可以将物体间的相对运动推广到椭圆轨道的二体运动模型,本部分将结合STK的仿真功能,联合考察TH方程的有用性,参考<New State Transition Matrix for Relative Motion on an Aribitary Ellipitcal Orbit>这篇文章的案例,共同复现该论文的数据

二、STK案例

为了证明式子的有用性,首先使用STK仿真该相对运动的真实轨迹,作为检验模型正确性的关键。关于STK与matlab的调用,给出的代码如下,读者可自行验证

% 使用STK验证VVLH坐标系
clc;clear
uiApplication = actxGetRunningServer('STK12.application');
root = uiApplication.Personality2;
checkempty = root.Children.Count;
if checkempty ~= 0root.CurrentScenario.Unloadroot.CloseScenario;
end
root.NewScenario('VVLH');
StartTime = '26 Jan 2024 04:00:00.000';    % 场景开始时间
StopTime = '10 Feb 2024 04:00:00.000';     % 场景结束时间
root.ExecuteCommand(['SetAnalysisTimePeriod * "',StartTime,'" "',StopTime,'"']);
root.ExecuteCommand(' Animate * Reset');
SatName = 'Target';       %  SAR_   GX_   Sat_  GX_1_  SAR_1_
satellite = root.CurrentScenario.Children.New('eSatellite', SatName);
satellite.SetPropagatorType('ePropagatorAstrogator');   %  不设置的时候默认为二体模型  ePropagatorJ4Perturbation
satellite.Propagator;
Perigee=6378.137+500;
Ecc=0.1;
sma=Perigee/(1-Ecc);
Inc=30;
w=0;
RAAN=0;
TA=45;
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList Initial_State Propagate']);
InitialState=satellite.Propagator.MainSequence.Item(0);
%% 初始化卫星参数
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.CoordinateType Modified Keplerian']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Epoch ',StartTime,' UTCG']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.sma ',num2str(sma),' km']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.ecc ',num2str(Ecc)]);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.inc ',num2str(Inc),' deg']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.w ',num2str(w),' deg']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.RAAN ',num2str(RAAN),' deg']);
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' SetValue MainSequence.SegmentList.Initial_State.InitialState.Keplerian.TA ',num2str(TA),' deg']);
%% 二体传播
Propagate=satellite.Propagator.MainSequence.Item(1);
Propagate.PropagatorName='Earth Point Mass';
root.ExecuteCommand(['Astrogator */Satellite/',SatName,' RunMCS']);% 插入目标星
SatName2 = 'Chaser';       %  SAR_   GX_   Sat_  GX_1_  SAR_1_
satellite2 = root.CurrentScenario.Children.New('eSatellite', SatName2);
satellite2.SetPropagatorType('ePropagatorAstrogator');   %  不设置的时候默认为二体模型  ePropagatorJ4Perturbation
satellite2.Propagator;
InitialState2=satellite2.Propagator.MainSequence.Item(0);
InitialState2.CoordSystemName='Satellite/Target VVLH';
InitialState2.Element.X=0.1;
InitialState2.Element.Y=0.01;
InitialState2.Element.Z=0.01;
InitialState2.Element.Vx=0.0001;
InitialState2.Element.Vy=0.0001;
InitialState2.Element.Vz=0.0001;
Propagate2=satellite2.Propagator.MainSequence.Item(1);
Propagate2.PropagatorName='Earth Point Mass';
root.ExecuteCommand(['Astrogator */Satellite/',SatName2,' RunMCS']);% 报告二颗卫星的三维关系
satellite.VO.OrbitSystems.InertialByWindow.IsVisible=0;
satellite2.VO.OrbitSystems.InertialByWindow.IsVisible=0;
satellite2.VO.OrbitSystems.Add('Satellite/Target VVLH System')
satellite.VO.Vector.RefCrdns.Item(2).Visible=1;targetdata=root.ExecuteCommand(['Report_RM */Satellite/Target  Style "VVLH" TimePeriod "26 Jan 2024 04:00:00.000" "26 Jan 2024 16:00:00.000" TimeStep 60']);
Num=targetdata.Count;
for j=1:Num-2struct=regexp(targetdata.Item(j),',','split');Tar_x(j)=str2double(struct{2});Tar_y(j)=str2double(struct{3});Tar_z(j)=str2double(struct{4});
end
%
figure(1)
plot(Tar_x(1:220),Tar_z(1:220));
axis([-3.5 0.5 -0.6 0.3])
set(gca,'XDir','reverse');
set(gca,'YDir','reverse');
grid on

这里需要额外注意VVLH报告在STK不是自带的,需要自己去定义,操作步骤右击目标星的Report & Graph Manager —— Create new report style —— 命名为VVLH —— 内容如下图所示

最后呈现的是XZ平面的相对位置


http://www.ppmy.cn/ops/45224.html

相关文章

Mybatis多表查询

MyBatis-多表查询-一对一查询(方式一) 一个菜品对应一个分类 直接菜品记录category对象 菜品id写入Dish,后面的分类直接写入 Category类 封装,如果sql不能封装上,那么直接使用resultmap封装 使用resultType只能封装基本属性 所以要定义一个resultmap手动封装 使用标签 要…

《web应用技术》第9次课后作业

一、将前面的代码继续完善功能 1、采用XML映射文件的形式来映射sql语句&#xff1b; 2、采用动态sql语句的方式&#xff0c;实现条件查询的分页。 二、学习git的使用。 1、每个小组将自己的项目上传到gitee&#xff0c;学会协作开发&#xff1b; 2、学会从gitee上拉取项目…

理解消息队列:队列与主题的区别

理解消息队列:队列与主题的区别 如果你研究过多种消息队列产品,可能会发现每种消息队列都有自己的一套消息模型,像队列(Queue)、主题(Topic)或分区(Partition)这些名词概念在不同的消息队列模型中含义各异。这是因为没有统一的标准。尽管曾有国际组织尝试制定过消息相…

字符串的扩展距离问题--------动态规划算法

文章目录 前言一、字符串的扩展距离问题 (给出问题)二、分析1.状态转移方程的由来 三、代码总结 前言 学无止境&#xff0c;笔勤不辍。最近笔者又闲了下来&#xff0c;于是抽空在课上写一篇关于动态规划思想的典型问题(最近遇到的奇奇怪怪的问题&#xff0c;困扰了笔者一段时间…

qt多语言翻译不生效的原因

假设您有QT语言家的基础知识&#xff0c;假设网上那些所有的问题您都已经排查过了&#xff0c;但依然翻译不生效&#xff0c;那么可以看下这篇帖子&#xff0c;其实就一个问题&#xff0c;变量的生命周期&#xff0c;假设QTranslator是一个函数内的变量&#xff0c;且没有被声明…

【WEB前端2024】开源智体世界:乔布斯3D纪念馆-第29课-会员制展厅

【WEB前端2024】开源智体世界&#xff1a;乔布斯3D纪念馆-第29课-会员制展厅 使用dtns.network德塔世界&#xff08;开源的智体世界引擎&#xff09;&#xff0c;策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。dtns.network是一款主要由JavaScript编写的智体世界引擎&…

齿轮常见故障学习笔记

大家好&#xff0c;这期咱们聊一聊齿轮常见的失效形式&#xff0c;查阅了相关的资料&#xff0c;做个笔记分享给大家&#xff0c;共同学习。 介绍 齿轮故障可能以多种方式发生。如果在设计阶段本身就尽量防止这些故障的产生&#xff0c;则可以产生改更为优化的齿轮设计。齿轮…

Go GORM介绍

GORM 是一个功能强大的 Go 语言 ORM&#xff08;对象关系映射&#xff09;库&#xff0c;它提供了一种方便的方式来与 SQL 数据库进行交互&#xff0c;而不需要编写大量的 SQL 代码。 GORM的关键特性 全功能的ORM&#xff1a;支持几乎所有的ORM功能&#xff0c;包括模型定义、基…