OpenCV实现霍夫变换

ops/2024/9/24 4:25:33/

返回:OpenCV系列文章目录(持续更新中......)

上一篇:OpenCV 如何实现边缘检测器
下一篇 :OpenCV 实现霍夫圆变换

目标

在本教程中,您将学习如何:

  • 使用 OpenCV 函数 HoughLines()和 HoughLinesP()检测图像中的线条。
  • 注:由于输入法问题按Q替代进行角度说明。

理论

注意

下面的解释属于 Bradski 和 Kaehler 的 Learning OpenCV 一书。

Hough 线变换

  1. Hough 线变换是用于检测直线的变换。
  2. 要应用变换,首先需要边缘检测预处理。

它是如何工作的?

  1. 如您所知,图像空间中的一条线可以用两个变量表示。例如:
    1. 笛卡尔坐标系中:参数:(m,b)
    2. 极坐标系中: 参数:(r,Q)

对于 Hough 变换,我们将在 Polar 系统中表示线。因此,直线方程可以写成:

排列项:

  1. 一般来说,对于每个点 \((x_{0}, y_{0})\),我们可以将通过该点的线族定义为:

    这意味着每对 \(r_{\theta},\theta)\) 表示经过 \((x_{0}, y_{0})\) 的每条线。

  2. 如果对于给定的(x0,有),我们绘制穿过它的线族,我们得到一个正弦曲线。例如,对于 (x0=8)和(y0=6,我们得到以下图(在平面plane  Q~r中):

我们只考虑(r<0)和这样的点。

  1. 我们可以对图像中的所有点执行上述相同的操作。如果两个不同点的曲线在平面 Q~r中相交,则表示两个点属于同一条直线。例如,按照上面的例子,再画两个点的图:X1=4,y1=9 和x2=12,y2=3,我们得到:

这三个图在一个点(0.925,9.6)相交,这些坐标是参数(Q,r)或(x0,y0)和(x1,y1)所在的线。

  1. 以上所有内容是什么意思?这意味着通常可以通过查找曲线之间的交点数来检测一条线。相交的曲线越多,意味着该相交所表示的直线具有更多的点。通常,我们可以定义检测一条线所需的最小交叉点数的阈值
  2. 这就是 Hough Line Transform 的作用。它跟踪图像中每个点的曲线之间的交点。如果交点数高于某个阈值,则将其声明为具有交点参数(Q,r0)的线。

标准和概率 Hough 线变换

OpenCV 实现了两种类型的 Hough 线变换:

a. 标准 Hough 变换

  • 它几乎包含我们在上一节中解释的内容。结果,它给你一个夫妻向量 (Q,r0)
  • 在 OpenCV 中,它是使用函数 HoughLines()实现的

b. 概率霍夫线变换

  • 更高效地实现 Hough 线变换。它给出检测到的行的极值(x0,y0,x1,y1)
  • 在 OpenCV 中,它是使用函数 HoughLinesP()实现的

这个程序是做什么的?

  • 加载图像
  • 应用标准 Hough 线变换概率线变换
  • 在三个窗口中显示原始图像和检测到的线条。

C++代码

们将要解释的示例代码可以从这里下载。可以在此处找到一个稍微花哨的版本(它显示了 Hough 标准和概率,带有用于更改阈值的跟踪栏)。

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"using namespace cv;
using namespace std;int main(int argc, char** argv)
{// Declare the output variablesMat dst, cdst, cdstP;const char* default_file = "sudoku.png";const char* filename = argc >=2 ? argv[1] : default_file;// Loads an imageMat src = imread( samples::findFile( filename ), IMREAD_GRAYSCALE );// Check if image is loaded fineif(src.empty()){printf(" Error opening image\n");printf(" Program Arguments: [image_name -- default %s] \n", default_file);return -1;}// Edge detectionCanny(src, dst, 50, 200, 3);// Copy edges to the images that will display the results in BGRcvtColor(dst, cdst, COLOR_GRAY2BGR);cdstP = cdst.clone();// Standard Hough Line Transformvector<Vec2f> lines; // will hold the results of the detectionHoughLines(dst, lines, 1, CV_PI/180, 150, 0, 0 ); // runs the actual detection// Draw the linesfor( size_t i = 0; i < lines.size(); i++ ){float rho = lines[i][0], theta = lines[i][1];Point pt1, pt2;double a = cos(theta), b = sin(theta);double x0 = a*rho, y0 = b*rho;pt1.x = cvRound(x0 + 1000*(-b));pt1.y = cvRound(y0 + 1000*(a));pt2.x = cvRound(x0 - 1000*(-b));pt2.y = cvRound(y0 - 1000*(a));line( cdst, pt1, pt2, Scalar(0,0,255), 3, LINE_AA);}// Probabilistic Line Transformvector<Vec4i> linesP; // will hold the results of the detectionHoughLinesP(dst, linesP, 1, CV_PI/180, 50, 50, 10 ); // runs the actual detection// Draw the linesfor( size_t i = 0; i < linesP.size(); i++ ){Vec4i l = linesP[i];line( cdstP, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, LINE_AA);}// Show resultsimshow("Source", src);imshow("Detected Lines (in red) - Standard Hough Line Transform", cdst);imshow("Detected Lines (in red) - Probabilistic Line Transform", cdstP);// Wait and ExitwaitKey();return 0;
}

代码片段解释


加载图像:

 const char* default_file = "sudoku.png";const char* filename = argc >=2 ? argv[1] : default_file;// Loads an imageMat src = imread( samples::findFile( filename ), IMREAD_GRAYSCALE );// Check if image is loaded fineif(src.empty()){printf(" Error opening image\n");printf(" Program Arguments: [image_name -- default %s] \n", default_file);return -1;}

 使用 Canny 检测器检测图像的边缘:

 // Edge detectionCanny(src, dst, 50, 200, 3);

现在我们将应用 Hough 线变换。我们将解释如何使用可用于此目的的两个 OpenCV 函数。

标准 Hough 线变换:

首先,应用转换:

 // Standard Hough Line Transformvector<Vec2f> lines; // will hold the results of the detectionHoughLines(dst, lines, 1, CV_PI/180, 150, 0, 0 ); // runs the actual detection
  • 使用以下参数:
    • dst:边缘检测器的输出。它应该是灰度图像(尽管实际上它是二进制图像)
    • lines:将存储检测到的线的参数的向量(r,Q)
    • rho :参数的分辨率,单位为r像素。我们使用 1 个像素。
    • theta:参数的分辨率,单位为Q弧度。我们使用 1 度 (CV_PI/180)
    • threshold:要“检测*”一条线的最小交叉点数
    • srn 和 stn:默认参数为零。有关详细信息,请查看 OpenCV 参考。

然后通过绘制线条来显示结果。

 // Draw the linesfor( size_t i = 0; i < lines.size(); i++ ){float rho = lines[i][0], theta = lines[i][1];Point pt1, pt2;double a = cos(theta), b = sin(theta);double x0 = a*rho, y0 = b*rho;pt1.x = cvRound(x0 + 1000*(-b));pt1.y = cvRound(y0 + 1000*(a));pt2.x = cvRound(x0 - 1000*(-b));pt2.y = cvRound(y0 - 1000*(a));line( cdst, pt1, pt2, Scalar(0,0,255), 3, LINE_AA);}

概率 Hough 线变换

首先,应用转换:

 // Probabilistic Line Transformvector<Vec4i> linesP; // will hold the results of the detectionHoughLinesP(dst, linesP, 1, CV_PI/180, 50, 50, 10 ); // runs the actual detection
  • 带有参数:
    • dst:边缘检测器的输出。它应该是灰度图像(尽管实际上它是二进制图像)
    • lines:将存储检测到的线的参数的向量(xstart,ystart,xend,yend)
    • rho :参数的分辨率,单位为r像素。我们使用 1 个像素。
    • theta:参数的分辨率,单位为Q弧度。我们使用 1 度 (CV_PI/180)
    • threshold:要“检测*”一条线的最小交叉点数
    • minLineLength:可以形成一条线的最小点数。小于此点数的线将被忽略。
    • maxLineGap:在同一条直线上要考虑的两点之间的最大间隙。

然后通过绘制线条来显示结果。

 // Draw the linesfor( size_t i = 0; i < linesP.size(); i++ ){Vec4i l = linesP[i];line( cdstP, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, LINE_AA);}

显示原始图像和检测到的线:

 // Show resultsimshow("Source", src);imshow("Detected Lines (in red) - Standard Hough Line Transform", cdst);imshow("Detected Lines (in red) - Probabilistic Line Transform", cdstP);

等到用户退出程序

 // Wait and ExitwaitKey();return 0;

结果

注意

下面的结果是使用我们在代码部分提到的稍微花哨的版本获得的。它仍然实现与上述相同的内容,只是为阈值添加了跟踪栏。使用输入图像,例如数独图像。我们通过使用标准 Hough 线变换得到以下结果:

通过使用概率 Hough 线变换:

您可能会发现,在更改阈值时,检测到的行数会发生变化。解释是显而易见的:如果建立更高的阈值,则检测到的行将减少(因为您将需要更多的点来声明检测到的行)。 

参考文献:

1、《Hough Line Transform》-----Ana Huamán


http://www.ppmy.cn/ops/22835.html

相关文章

基于 Spring Boot 博客系统开发(二)

基于 Spring Boot 博客系统开发&#xff08;二&#xff09; 本系统是简易的个人博客系统开发&#xff0c;为了更加熟练地掌握SprIng Boot 框架及相关技术的使用。&#x1f33f;&#x1f33f;&#x1f33f; 基于 Spring Boot 博客系统开发&#xff08;一&#xff09;&#x1f4…

上市企业数字赋能指数数据集-2001到2022年(TF-IDF)

01、数据简介 上市公司数字赋能指数是一个用来衡量上市公司利用数字技术提高业务能力和效率的指标。这个指数反映了上市公司利用大数据、云计算和人工智能等数字技术&#xff0c;高效地利用商业资源和信息&#xff0c;并扩展供应关系的能力。市公司数字赋能指数是一种综合性的…

一文汇编荆门市与掇刀区高新技术企业、科技型中小企业、孵化器、众创空间等各项科技类奖补政策

荆门市与掇刀区高新技术企业、科技型中小企业、孵化器、众创空间等各项科技类奖补政策 CALL me 见 个人 简介 &#xff08;一&#xff09;市级政策 1、入驻荆楚科创城企业扶持政策 &#xff08;1&#xff09;对入驻科创城的各类科创主体&#xff0c;根据其实际需要提供办…

【紫光同创盘古PGX-Nano教程】——(盘古PGX-Nano开发板/PG2L50H_MBG324第三章)键控流水灯实验例程

本原创教程由深圳市小眼睛科技有限公司创作&#xff0c;版权归本公司所有&#xff0c;如需转载&#xff0c;需授权并注明出处&#xff08;www.meyesemi.com) 适用于板卡型号&#xff1a; 紫光同创PG2L50H_MBG324开发平台&#xff08;盘古PGX-Nano&#xff09; 一&#xff1a;…

使用 Flask 和 WTForms 构建一个用户注册表单

在这篇技术博客中&#xff0c;我们将使用 Flask 和 WTForms 库来构建一个用户注册表单。我们将创建一个简单的 Flask 应用&#xff0c;并使用 WTForms 定义一个注册表单&#xff0c;包括用户名、密码、确认密码、邮箱、性别、城市和爱好等字段。我们还将为表单添加验证规则&…

在ubuntu 24.04 上安装vmware workstation 17.5.1

ubuntu安装在新组装的i9 14900机器上&#xff0c;用来学习笨叔的ARM64体系结构编程&#xff0c;也熟悉Linux的用法。但有时候写文档总是不方便&#xff0c;还是需要window来用。因此想在ubuntu 24.04上安装Linux版本的vmware worksation 17.5.1以虚拟机的方式安装windows 11。其…

秋招后端开发面试题 - Java多线程(下)

目录 Java多线程前言面试题synchronized&#xff1f;作用&#xff1f;synchronized 怎么使用&#xff1f;构造方法可以用 synchronized 修饰吗&#xff1f;synchronized 底层原理了解吗&#xff1f;除了原子性&#xff0c;synchronized 可见性&#xff0c;有序性&#xff0c;可…

开发使用Git的实践操作

程序员在使用Git进行代码管理时&#xff0c;涉及到许多常用的Git命令和功能&#xff0c;以下是详细的解释和分析&#xff1a; 程序员常用的Git命令 git init - 初始化一个新的Git仓库。这是开始使用Git跟踪项目的第一步。git clone - 复制一个远程仓库到本地&#xff0c;这样…