【区块链】椭圆曲线数字签名算法(ECDSA)

ops/2024/10/18 16:51:34/

本文主要参考:

一文读懂ECDSA算法如何保护数据
椭圆曲线数字签名算法

1. ECDSA算法简介

  ECDSAElliptic Curve Digital Signature Algorithm 的简称,主要用于对数据(比如一个文件)创建数字签名,以便于你在不破坏它的安全性的前提下对它的真实性进行验证。
  你不应该将 ECDSA 与用来对数据进行加密的 AES(高级加密标准)相混淆。ECDSA 不会对数据进行加密、或阻止别人看到或访问你的数据,它可以防止的是确保数据没有被篡改。
  ECDSA 原理非常简单,有一个数学方程,在图上画了一条曲线,然后你在这条曲线上面随机选取了一个点作为你的 原点 G。接着你产生了一个 随机数 k,作为你的 私钥,最后你用上面的 随机数 k原点 G 通过一些复杂的魔法数学方程得到该条曲线上面的第二个点,这是你的 公钥 P

  当你想要对一个文件进行签名的时候,签名本身由两部分组成,称为 r 和 s 。通过 私钥k(随机数) 和文件的 哈希 组成一个魔法数学方程,这将给出你的签名的 s 部分。取 公钥 P 的 x 轴即为签名的 r 部分。为了验证签名的正确性,你需要 公钥 P 和签名 s、r组成一个魔法数学方程,该方程计算会得到一个坐标点,如果该坐标点的 x 轴刚好为签名中的 r,那么即可认为改签名是有效的。

2.椭圆曲线密钥生成

  像 y 2 = x 3 + a x + b y^2 = x^3 +ax+b y2=x3+ax+b 这样的式子通常画出来是个椭圆曲线,如下图所示:

  画一条直线与椭圆曲线产生三个交点(P、Q、-R),我们称 P + Q = R,R 即为 -R 关于x轴的对称点(请注意这里的 + 实际指的是第三个交点的 x 轴对称点)。
  若以椭圆曲线的某一切点 G 做一直线,则直线与椭圆曲线的另一交点即为 -2G,其关于x轴对称点即为 2G 点,若 2G 点与 G 点连接即可得到 3G 点,以此类推,即可得到 kG 点。
  引入 G 点的好处是可以实现快速寻找,我们以 G 点做切线即可得到 2G 点,以 2G点为切线即可得到 4G 点,以此类推,这样的寻找过程,大大的减少了寻找次数。

  椭圆曲线还有一个特性就是,我们以 G 为起点经过 k 次寻找后,得到 kG 点这一顺序计算过程是比较简单的,但如果我们已知 G 点要得到 kG 点是经过多少次寻找得到的是比较困难的,我们只能对 k 一个一个尝试,当 k 比较大时,k 的寻找过程是及其困难的,因此,这一过程是ECDSA算法背后安全性的基础,而这一原则也被称为 单向陷门函数

比特币的椭圆曲线一般是采用以下函数:
y 2 = x 3 + 7 , a = 0 , b = 7 y^2 = x^3+7,a=0,b=7 y2=x3+7a=0,b=7
开始的节点 Generator(G) 坐标为:
G x = 0 x 79 B E 667 E F 9 D C B B A C 55 A 06295 C E 870 B 07029 B F C D B 2 D C E 28 D 959 F 2815 B 16 F 81798 Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798 Gx=0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
G y = 0 x 483 A D A 7726 A 3 C 4655 D A 4 F B F C 0 E 1108 A 8 F D 17 B 448 A 68554199 C 47 D 08 F F B 10 D 4 B 8 Gy = 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8 Gy=0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
私钥 k 一般是选择比较大的随机数,通过开始节点 G 与私钥 k,我们即可得到公钥节点 P

3.椭圆曲线数字签名实现

  假设Alice要给Bob发送消息 M,Alice 根据 起始点 G 与选择的 随机数(私钥) k 可得到 公钥 P,然后用 私钥 k 与 要发送的消息M的哈希值 HASH(M) 相乘得到 s,然后将要发送的信息 M 与 s 一同发送给 Bob。Bob得到信息后,通过Alice的 公钥 PHash(M) 相乘得到 Y,然后将 s 与 G 相乘得到X,如果X=Y则改签名即为有效,具体过程如下图所示:
在这里插入图片描述
X=Y合理性证明:
X = H a s h ( M ) ∗ P = H a s h ( M ) ∗ k ∗ G = s ∗ G = Y X=Hash(M) * P=Hash(M)*k*G=s*G=Y X=Hash(M)P=Hash(M)kG=sG=Y
  虽然以上过程实现了数字签名,但是以上的签名过程是存在一定漏洞的,因为 Bob 得到的数据有 Alice 的公钥 P、s、以及起始坐标 G,根据 G 与 P 是推断不出私钥 k 的,但是 k 可由 s 计算得到 k = s / H a s h ( M ) k = s/Hash(M) k=s/Hash(M),因此,科学家为其又想了新的办法。

签名过程:

  • 随机产生一个随机数 e ,通过计算得到 e G = Q eG = Q eG=Q
  • 随机产生一个随机数 k 作为私钥,计算得到 k G = P kG = P kG=P P P P 即为公钥,然后记录下 P P P x x x 坐标记为 r r r
  • 利用 SHA1 计算要传递信息 M M M 的哈希值 z z z
  • 利用方程 s = ( z + e ∗ r ) / k s = (z+e*r)/k s=(z+er)/k 计算得到 s s s
  • 要传递的数据即为 原始数据MM的Hash值zrs

验证过程:

  计算 z ∗ G s + r ∗ Q s = P \frac{z*G}{s}+\frac{r*Q}{s} = P szG+srQ=P ,若左右相等,则即为有效签名。

签名验证过程:
在这里插入图片描述

验证以上公式有效性:
z ∗ G s + r ∗ Q s = z ∗ G + r ∗ Q s = z ∗ G + r ∗ e ∗ G s = ( z + r ∗ e ) ∗ G s = ( z + r ∗ e ) ∗ G ∗ k ( z + r ∗ e ) = k G = P \begin{aligned} \frac{z*G}{s}+\frac{r*Q}{s}&=\frac{z*G+r*Q}{s}\\&=\frac{z*G+r*e*G}{s}\\&=\frac{(z+r*e)*G}{s}\\&=\frac{(z+r*e)*G*k} {(z+r*e)}\\&=kG\\&=P\end{aligned} szG+srQ=szG+rQ=szG+reG=s(z+re)G=(z+re)(z+re)Gk=kG=P
由于两侧求得的都为坐标,比较 x 轴即可。

  以上签名过程中被外界所指的参数有 公钥P公钥Q起始点Grs,我们可以看到在上面可由 s 求出密钥 k 的漏洞在现在的签名中不存在了,因为 s = ( z + e ∗ r ) / k s = (z+e*r)/k s=(z+er)/k,其中有两个未知参数 e 与 k,所以此签名过程比上面的更加完备了。

  由于计算过程中所得数据要在规定的字节范围内,所以在实际代码中要进行取模运算。

4. 代码实现

  以下是使用 go 语言实现的ECDSA算法的签名与认证:
签名:

func (ecc *MyECC) Sign(msg []byte, secKey *big.Int) (*Signature, error) {// 随机产生随机数k作为私钥k,error := newRand()if error != nil {return nil, error}// 对要传递的消息msg进行hash运算得到zz_bytes := crypto.Keccak256(msg)z := new(big.Int).SetBytes(z_bytes)z.Mod(z, N)//计算得到私钥k的公钥P,并求出其x坐标作为rP := Multi(G,k)r := new(big.Int).Mod(P.X,N)// 计算要传递的参数ss := new(big.Int).Mul(r, secKey)s.Add(s, z)  s.Mul(s, Inv(k, N))  s.Mod(s, N)  // 传递s与rs_r := &Signature{s, r}return s_r, nil
}

验证:

func (ecc *MyECC) VerifySignature(msg []byte, signature *Signature, pubkey *Point) bool {// 获得s与rs, r := signature.s, signature.r// 获得传递信息msg的hash值zz_bytes := crypto.Keccak256(msg)z := new(big.Int).SetBytes(z_bytes)z.Mod(z, N)// 使用费马小定理求得1/ss_inv := Inv(s, N)// 取u = z/su := new(big.Int).Mul(z,s_inv)u.Mod(u, N)// 取v = r/sv := new(big.Int).Mul(r,s_inv)v.Mod(v, N)// 计算u*G与v*QuG := Multi(G,u)vQ := Multi(pubkey,v)// 计算u*G+v*Q得到R,并取出其x轴R := Add(uG,vP)Rx := new(big.Int).Mod(R.X,N)// 比较判断是否相同if Rx.Cmp(r)==0{return true}else{return false}}

http://www.ppmy.cn/ops/20314.html

相关文章

xLua详解

目录 环境准备xLua导入 C#调用LuaLua解析器Lua文件加载重定向Lua解析管理器全局变量的获取全局函数的获取List和Dictionary映射table类映射table接口映射tableLuaTable映射table Lua调用C#准备工作Lua使用C#类Lua调用C#枚举Lua使用C# 数组 List 字典数组List字典 Lua使用C#扩展…

【kettle003】kettle访问SQL Server数据库并处理数据至execl文件

一直以来想写下基于kettle的系列文章,作为较火的数据ETL工具,也是日常项目开发中常用的一款工具,最近刚好挤时间梳理、总结下这块儿的知识体系。 熟悉、梳理、总结下Microsoft SQL Server 2022关系数据库相关知识体系 kettle访问SQL Server数…

uniapp 页面滚动到指定位置的方法

方法一:使用uni.pageScrollTo 使页面纵向滚到到指定位置 uni.pageScrollTo({scrollTop: 0,duration: 300 }); 如果滚动无效,可以尝试将代码放在settimeOut(异步),或者nextTick(微任务)。若仍滚…

数据结构与算法-图论-DFS/BFS

图搜索算法在数据结构与算法领域中非常关键,用于在图形数据结构中搜索节点或路径。图是由节点(也称为顶点)以及连接这些节点的边组成的。在本文中,我们将详细探讨两种基础的图搜索算法:深度优先搜索(DFS&am…

力扣1518. 换水问题

题目链接 力扣1518. 换水问题 简单方法(模拟) 思路 对换水进行模拟,每次喝完 n u m E x c h a n g e numExchange numExchange 瓶水后就去换一瓶水,直到不能再兑换为止,也就是剩余水的数量小于 n u m E x c h a n g e numExchange numE…

使用 Dify 和 Moonshot API 构建你的 AI 工作流(一):让不 AI 的应用 AI 化

有了之前的文章铺垫,这篇文章开始,我们聊聊如何折腾 AI 工作流,把不 AI 的应用,“AI 起来”。 写在前面 上个月,我们聊过了《使用 Dify 和 AWS Bedrock 玩转 Anthropic Claude 3》,里面介绍了如何使用交互…

VScode调用devcpp编译

打开环境变量,用户和系统都可以,只是给的权限不一样而已,个人pc一般不会设置多个用户 找到path双击 新建一个,把你的dev的MinGW64\bin路径粘贴过去 然后重启电脑,VScode要重启电脑才能加载新的环境变量 打开VScode&a…

linux笔记4--shell命令1

文章目录 一. 目录1.说明2.盘符3.linux根目录(以Ubuntu为例)①说明②根目录下一些文件夹的解析/home/root/mnt/media/var/cdrom/etc/lib (/lib32--32位的,/lib64-64位的)/lostfound/boot/proc/bin/sbin/snap/srv/usr/opt/dev/run/tmp 二. ls命令--操作文件夹1.说明2…