深度学习-自动求导

ops/2024/10/22 16:39:12/

目录

  • 向量链式法则
    • 标量链式法则
  • 拓展到向量
    • 例题1
    • 例题2
  • 符号求导
  • 数值求导
  • 自动求导
    • 计算图
    • 自动求导的两种模式
      • 链式法则
      • 正向累积(从x出发)
      • 反向累积(反向传递--先计算最终的函数即y)
      • 反向累积总结
  • 自动求导
  • 计算y关于x的梯度,使用requires_grad(True)
    • 计算y
  • 通过调用反向传播函数来自动计算y关于x每个分量的梯度
  • PyTorch会累积梯度,使用zero_()函数清除梯度
  • 批量中每个样本单独计算的偏导数之和
  • 将某些计算移动到记录的计算图之外
  • 即使构建函数的计算图通过Python控制流仍可以计算变量的梯度
  • 问题
    • 多个loss(损失函数)分别反向的时候是不是需要累积梯度?
    • 需要正向和反向都要算一遍吗?
    • 为什么Pytorch会默认累积梯度?
    • 为什么获取.grad前需要backward?

向量链式法则

标量链式法则

在这里插入图片描述




拓展到向量

在这里插入图片描述




例题1

在这里插入图片描述

过程:
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述





例题2

在这里插入图片描述

过程:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
然后将分解的回代




符号求导

在这里插入图片描述

数值求导

在这里插入图片描述

自动求导

自动求导计算一个函数在指定值上的导数

计算图

将代码分解为操作子
将计算表示成一个无环图
在这里插入图片描述
显示构造
在这里插入图片描述
隐式构造
在这里插入图片描述




自动求导的两种模式

链式法则

在这里插入图片描述

正向累积(从x出发)

在这里插入图片描述

反向累积(反向传递–先计算最终的函数即y)

在这里插入图片描述

这里的反向先计算z的函数
在这里插入图片描述




反向累积总结

构造计算图
前向:执行图,存储中间结果
反向:从相反方向执行图
去除不需要的枝

在这里插入图片描述

计算复杂度:O(n),n是操作子个数
通常正向和方向的代价类似
内存复杂度:O(n),因为需要存储正向的所有中间结果

正向累积:
它的内存复杂度是O(1),即不管多深我不需要存储它的结果,而反向累积则需要存储。

反向从根节点向下扫,可以保证每个节点只扫一次;
正向从叶节点向上扫,会导致上层节点可能需要被重复扫多次。

(正向中 子节点比父节点先计算,因此也无法像反向那样把本节点的计算结果传给每个子节点。)




自动求导

假设我们对函数 y=2 x T x^T xTx 求导

import torch
x = torch.arange(4.0)
print(x)

结果:在这里插入图片描述




计算y关于x的梯度,使用requires_grad(True)

import torch
x = torch.arange(4.0, requires_grad=True)
print(x.grad)

结果:在这里插入图片描述

计算y

import torch
x = torch.arange(4.0, requires_grad=True)
y = 2 * torch.dot(x, x)
print(y)

结果:在这里插入图片描述




通过调用反向传播函数来自动计算y关于x每个分量的梯度

import torch
x = torch.arange(4.0, requires_grad=True)
print(x)
y = 2 * torch.dot(x, x)
y.backward() #求导
print(x.grad) #x.grad访问导数

结果:在这里插入图片描述
y=2 x 2 x^2 x2然后使用求导函数backward()实质是y导=4x(下面验证)。

import torch
x = torch.arange(4.0, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward() #求导
print(x.grad == 4*x)

结果:在这里插入图片描述




PyTorch会累积梯度,使用zero_()函数清除梯度

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零
y = x.sum()
y.backward() #求导
print(x.grad)

因为求向量的sum()所以梯度是全1
y是标量
y是对x的的求和:y= x 1 x_1 x1+ x 2 x_2 x2+ x 3 x_3 x3+ x 4 x_4 x4
对y进行x的偏导:dy/ d x 1 dx_1 dx1,dy/ d x 2 dx_2 dx2,dy/ d x 3 dx_3 dx3,dy/ d x 4 dx_4 dx4

在这里插入图片描述




批量中每个样本单独计算的偏导数之和

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x*x #x是向量,y即向量
print(y) #输出查看
y.sum().backward() #求导
print(x.grad)

梯度(求导)清零:必须先存在梯度,如果没有y.backward()则x.grad.zero_()会报错。
结果:在这里插入图片描述




将某些计算移动到记录的计算图之外

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x * x #x是向量,y即向量
print(y) #输出查看
u = y.detach()#把y当作一个常数,而不是关于x的函数,把它做成u
z = u * x #相当于z=常数*x
z.sum().backward()
print(x.grad == u)

结果:这里的z就是为了后续求导检查是否与detach()后一致。
在这里插入图片描述


import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x * x #x是向量,y即向量
y.sum().backward()
print(x.grad == 2 * x)

结果:
在这里插入图片描述




即使构建函数的计算图通过Python控制流仍可以计算变量的梯度

import torchdef f(a):b = a * 2while b.norm() < 1000:#norm()计算张量的范数, 计算了张量 b 的L2范数b = b * 2if b.sum(): #检查 b 所有元素的总和是否非零c = b #非0的时候的操作else:c = 100 * breturn ca = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()
print(a.grad == d / a) #梯度验证

结果:在这里插入图片描述




问题

多个loss(损失函数)分别反向的时候是不是需要累积梯度?

是的

需要正向和反向都要算一遍吗?

是的

为什么Pytorch会默认累积梯度?

设计上的理念,通常一个大的批量无法一次计算出,所以分为多次,然后累加起来。

为什么获取.grad前需要backward?

不进行backward时不会计算梯度,因为计算梯度是一个很“贵”的事情


http://www.ppmy.cn/ops/18888.html

相关文章

Docker 入门篇(二)-- Linux 环境离线安装

引言 docker 系列文章&#xff1a; Docker 入门篇&#xff08;一&#xff09;-- 简介与安装教程&#xff08;Windows和Linux&#xff09; 一、安装环境准备 centos &#xff1a;CentOS Linux release 7.6.1810 (Core)docker 版本&#xff1a;docker-26.1.0.tgz 官网下载地址…

边OTG边充电芯片LDR6500

随着科技的飞速发展&#xff0c;智能移动设备已成为我们生活中不可或缺的一部分。而在这些设备的连接与数据传输中&#xff0c;Type-C接口以其高效、便捷的特性逐渐占据了主导地位。OTG&#xff08;On-The-Go&#xff09;技术则进一步扩展了Type-C接口的功能&#xff0c;使得设…

普通屏幕已过时?裸眼3D屏幕显示效果更胜一筹!

随着多媒体技术的迅猛进步&#xff0c;我们日常生活中的内容展现方式&#xff0c;已经经历了前所未有的变革。在这其中&#xff0c;裸眼3D屏幕的应用&#xff0c;无疑是最为引人注目的亮点&#xff0c;它相较于传统屏幕&#xff0c;在显示效果上展现出了鲜明的优势&#xff0c;…

设计模式学习笔记 - 开源实战四(中):剖析Spring框架中用来支持扩展的设计模式

概述 上篇文章&#xff0c;学习了 Spring 框架背后蕴含的设计思想&#xff0c;比如约定优于配置、低侵入松耦合、模块化轻量级等等。这些设计思想可以借鉴到其他框架开发中&#xff0c;在大的设计层面提高框架的代码质量。 除了上篇文章降到的设计思想&#xff0c;实际上&…

基于springboot的考勤管理系统

文章目录 项目介绍主要功能截图&#xff1a;部分代码展示设计总结项目获取方式 &#x1f345; 作者主页&#xff1a;超级无敌暴龙战士塔塔开 &#x1f345; 简介&#xff1a;Java领域优质创作者&#x1f3c6;、 简历模板、学习资料、面试题库【关注我&#xff0c;都给你】 &…

项目实战问题

1、 怎么快速给几百万数据的表加索引&#xff1f; 影子策略 方案思路 创建一张与原表&#xff08;tb&#xff09;结构相同的新表&#xff08;tb_new&#xff09; 在新表上创建索引 重命名原表为其他表名&#xff08;tb > tb_tmp&#xff09;&#xff0c;新表重命名为原表名…

GIS分析之采用最近邻法进行空间聚类

最近从事一个空间分析项目,我需要一种将一系列点分配给集群的方法,其中集群中的所有点都必须在合理的步行距离内。为了使这一点更加具体,我将使用一个假设的场景。 Alexa 是一位富有进取心的企业家,他预测随着气候变化的日益临近,冰淇淋的需求将会增加。她计划在一个地区设…

七星创客新零售系统:颠覆性商业模式的崛起

大家好&#xff0c;我是微三云周丽&#xff0c;今天给大家分析当下市场比较火爆的商业模式&#xff01; 小编今天跟大伙们分享什么是七星创客新零售系统&#xff1f; 随着经济的快速发展和科技的不断进步&#xff0c;商业模式的革新成为了企业发展的关键。在这个新旧动能转换、…