【C++11】深入浅出 std::async

ops/2025/3/20 13:09:35/

【C++11】深入浅出 std::async

一、基本用法

c++11中增加了线程,使得我们可以非常方便的创建线程,它的基本用法是这样的:

void f(int n);
std::thread t(f, n + 1);
t.join();

但是线程毕竟是属于比较低层次的东西,有时候使用有些不便,比如我希望获取线程函数的返回结果的时候,我就不能直接通过 thread.join()得到结果,这时就必须定义一个变量,在线程函数中去给这个变量赋值,然后join,最后得到结果,这个过程是比较繁琐的。 c++11还提供了异步接口std::async,通过这个异步接口可以很方便的获取线程函数的执行结果。std::async会自动创建一个线程去调用 线程函数,它返回一个std::future,这个future中存储了线程函数返回的结果,当我们需要线程函数的结果时,直接从future中获取,非常方便。但是我想说的是,其实std::async给我们提供的便利可不仅仅是这一点,它首先解耦了线程的创建和执行,使得我们可以在需要的时候获取异步 操作的结果;其次它还提供了线程的创建策略(比如可以通过延迟加载的方式去创建线程),使得我们可以以多种方式去创建线程。在介绍async具体用法以及 为什么要用std::async代替线程的创建之前,我想先说一说std::futurestd::promisestd::packaged_task

二、std::future

std::future是一个非常有用也很有意思的东西,简单说std::future提供了一种访问异步操作结果的机制。从字面意思来理解, 它表示未来,我觉得这个名字非常贴切,因为一个异步操作我们是不可能马上就获取操作结果的,只能在未来某个时候获取,但是我们可以以同步等待的方式来获取 结果,可以通过查询future的状态(future_status)来获取异步操作的结果。future_status有三种状态:

  • deferred异步操作还没开始
  • ready:异步操作已经完成
  • timeout:异步操作超时
//查询future的状态
std::future_status status;
do {status = future.wait_for(std::chrono::seconds(1));if (status == std::future_status::deferred) {std::cout << "deferred\n";} else if (status == std::future_status::timeout) {std::cout << "timeout\n";} else if (status == std::future_status::ready) {std::cout << "ready!\n";}
} while (status != std::future_status::ready);

获取future结果有三种方式:getwaitwait_for,其中get等待异步操作结束并返回结果wait只是等待异步操作完成,没有返回值wait_for是超时等待返回结果

三、std::promise

std::promise为获取线程函数中的某个值提供便利,在线程函数中给外面传进来的promise赋值,当线程函数执行完成之后就可以通过promis获取该值了,值得注意的是取值是间接的通过promise内部提供的future来获取的。它的基本用法:

std::promise<int> pr;
std::thread t([](std::promise<int>& p){ p.set_value_at_thread_exit(9); },std::ref(pr));
std::future<int> f = pr.get_future();
auto r = f.get();

四、std::packaged_task

std::packaged_task它包装了一个可调用的目标(如function, lambda expression, bind expression, or another function object),以便异步调用,它和promise在某种程度上有点像,promise保存了一个共享状态的值,而packaged_task保存的是一 个函数。它的基本用法:

std::packaged_task<int()> task([](){ return 7; });
std::thread t1(std::ref(task)); 
std::future<int> f1 = task.get_future(); 
auto r1 = f1.get();

五、std::promisestd::packaged_taskstd::future的关系

至此, 我们介绍了std::async相关的几个对象std::future、std::promise和std::packaged_task,其中 std::promisestd::packaged_task的结果最终都是通过其内部的future返回出来的,不知道读者有没有搞糊涂,为什么有 这么多东西出来,他们之间的关系到底是怎样的?且听我慢慢道来,std::future提供了一个访问异步操作结果的机制,它和线程是一个级别的属于低层 次的对象,在它之上高一层的是std::packaged_task和std::promise,他们内部都有future以便访问异步操作结 果,std::packaged_task包装的是一个异步操作std::promise包装的是一个值,都是为了方便异步操作的,因为有时我需要获 取线程中的某个值,这时就用std::promise,而有时我需要获一个异步操作的返回值,这时就用std::packaged_task。那 std::promise和std::packaged_task之间又是什么关系呢?说他们没关系也关系,说他们有关系也有关系,都取决于你了,因为我 可以将一个异步操作的结果保存到std::promise中。如果读者还没搞清楚他们的关系的话,我就用更通俗的话来解释一下。比如,一个小伙子给一个姑 娘表白真心的时候也许会说:”我许诺 会 给你一个美好的未来“或者”我会努力奋斗为你创造一个美好的未来“。姑娘往往会说:”我等着“。现在我来将这三句话用c++11来翻译一下:

小伙子说:我许诺会给你一个美好的未来等于c++11中"std::promise a std::future";
小伙子说:我会努力奋斗为你创造一个美好的未来等于c++11中"std::packaged_task a future";
姑娘说:我等着等于c++11中"future.get()/wait()";

小伙子两句话的个中差异,自己琢磨一下,这点差异也是std::promise和std::packaged_task的差异。现实中的山盟海 誓靠不靠得住我不知道,但是c++11中的许诺和未来是一定可靠的,发起来了许诺就一定有未来。细想起来c++11标准的制定者选定的关键字真是贴切而有 意思!好了,插科打诨到此了,现在言归正传,回过头来说说std::async。

六、为什么要用std::async代替线程的创建

std::async又是干啥的,已经有了std::future、std::promise和std::packaged_task,够多的 了,真的还要一个std::async来凑热闹吗,std::async表示很委屈:我不是来凑热闹的,我是来帮忙的。是的,std::async是为了 让用户的少费点脑子的,它让这三个对象默契的工作。大概的工作过程是这样的:std::async先将异步操作用std::packaged_task包 装起来,然后将异步操作的结果放到std::promise中,这个过程就是创造未来的过程。外面再通过future.get/wait来获取这个未来的 结果,怎么样,std::async真的是来帮忙的吧,你不用再想到底该怎么用std::future、std::promise和 std::packaged_task了,std::async已经帮你搞定一切了!

现在来看看std::async的原型async(std::launch::async | std::launch::deferred, f, args...),第一个参数是线程的创建策略,有两种策略,默认的策略是立即创建线程:

  • std::launch::async:在调用async就开始创建线程。
  • std::launch::deferred:延迟加载方式创建线程。调用async时不创建线程,直到调用了future的get或者wait时才创建线程。
    第二个参数是线程函数,第三个参数是线程函数的参数。

七、std::async基本用法:

std::future<int> f1 = std::async(std::launch::async, [](){return 8; });cout<<f1.get()<<endl; //output: 8std::future<int> f2 = std::async(std::launch::async, [](){cout<<8<<endl;});f2.wait(); //output: 8std::future<int> future = std::async(std::launch::async, [](){std::this_thread::sleep_for(std::chrono::seconds(3));return 8; });std::cout << "waiting...\n";std::future_status status;do {status = future.wait_for(std::chrono::seconds(1));if (status == std::future_status::deferred) {std::cout << "deferred\n";} else if (status == std::future_status::timeout) {std::cout << "timeout\n";} else if (status == std::future_status::ready) {std::cout << "ready!\n";}} while (status != std::future_status::ready);std::cout << "result is " << future.get() << '\n';

可能的结果: waiting... timeout timeout ready! result is 8

总结:

std::async是更高层次上的异步操作,使我们不用关注线程创建内部细节,就能方便的获取异步执行状态和结果,还可以指定线程创建策略,应该用std::async替代线程的创建,让它成为我们做异步操作的首选。

文章来源:https://blog.csdn.net/qq_43331089/article/details/146316002
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ppmy.cn/ops/166940.html

相关文章

机器学习在科研领域的应用与未来趋势:机器学习第一性原理+分子动力学

“机器学习”这个词听起来很高大上&#xff0c;但其实概念很简单&#xff1a;让机器像人一样学习。 机器学习的核心是它的自学习能力&#xff0c;能通过训练从数据中发现规律&#xff0c;为各种科学问题提供创新解决方案。 本文较长&#xff0c;建议先收藏后随时查看&#xff0…

Java学习打卡-Day18-ArrayList、Vector、LinkedList

ArrayList 底层是数组队列&#xff0c;相当于动态数组。 ArrayList 中维护了一个Object 类型的数组elementData transient Object[] elementData; ArrayList 中可以存储任何类型的对象&#xff0c;包括 null 值。不过&#xff0c;不建议向ArrayList 中添加 null 值&#xff0c…

「速通AI编程开发」共学(三):提示词(Prompts)配置项

「速通AI编程开发」共学&#xff08;三&#xff09; 一、共学课程来源学习初衷 二、介绍不同模式下的提示词&#xff08;Prompts&#xff09;支持性提示词 三、提示词学习材料分享 一、共学课程来源 Datawhale通过开源学习模式&#xff0c;助力AI学习者与知识连接&#xff0c;…

Deepseek API+Python测试用例一键生成与导出-V1.0.2【实现需求文档图片识别与用例生成自动化】

在测试工作中&#xff0c;需求文档中的图片&#xff08;如界面设计图、流程图&#xff09;往往是测试用例生成的重要参考。然而&#xff0c;手动提取图片并识别内容不仅耗时&#xff0c;还容易出错。本文将通过一个自研小工具&#xff0c;结合 PaddleOCR 和大模型&#xff0c;自…

超参数优化算法:scikit-opt库、Scikit-Optimize库

1 scikit-opt库&#xff1a;https://www.cnblogs.com/luohenyueji/p/18333387 https://blog.csdn.net/weixin_45750972/article/details/124683402 a 差分进化算法 (Differential Evolution)&#xff1a;一种基于群体搜索的优化算法&#xff0c;通过模拟生物进化的过程来寻找最…

python局部变量和全局变量

文章目录 1.局部变量和全局变量2.局部变量2.1 局部变量的作用2.2 局部变量的生命周期 3. 全局变量3.1 函数不能直接修改全局变量的引用3.2 在函数内部修改全局变量的值3.3 全局变量定义的位置3.4 全局变量命名的建议 1.局部变量和全局变量 &#xff08;1&#xff09;局部变量 …

Spring 创建bean的流程

Bean的创建流程 创建bean流程 Spring 三级缓存 循环依赖的解决流程&#xff1a; 因为成品和半成品对象无法放在都一个map&#xff0c;同时半成品不能暴露出来使用&#xff0c;因此Spring提出三级缓存来解决循环依赖问题 三级缓存定义如下&#xff1a; /** 一级缓存 单例缓存…

贪心算法(7)(java) 分发饼干

题目&#xff1a;假设你是一位很棒的家长&#xff0c;想要给你的孩子们一些小饼干。但是&#xff0c;每个孩子最多只能给一块饼干。 对每个孩子i&#xff0c;都有一个胃口值g[i]&#xff0c;这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干j&#xff0c;都有一个尺寸 s[j…