【存储中间件】Redis核心技术与实战(四):Redis高并发高可用(Redis集群介绍与搭建)

ops/2025/3/18 17:15:30/

文章目录

  • Redis集群
    • 集群前置知识
      • 数据分布理论
        • 节点取余分区
        • 一致性哈希分区
        • 虚拟一致性哈希分区
        • 虚拟槽分区
        • 为什么槽的范围是0 ~16383?
      • Redis数据分区
        • Redis 虚拟槽分区的特点
        • 集群功能限制
    • 搭建集群
      • 节点配置
      • 集群创建
        • 创建集群随机主从节点
        • 指定主从节点
          • 创建集群主节点
          • 添加集群从节点
      • 集群管理
        • 检查集群
        • 集群信息查看
        • 修复集群
        • 设置集群的超时时间
        • 集群配置
      • redis-cli –cluster 参数参考

在这里插入图片描述
个人主页:道友老李
欢迎加入社区:道友老李的学习社区

Redis集群

Redis Cluster是Redis的分布式解决方案,在3.0版本正式推出,有效地解决了Redis分布式方面的需求。当遇到单机内存、并发、流量等瓶颈时,可以采用Cluster架构方案达到负载均衡的目的。之前,Redis分布式方案一般有两种:

1、客户端分区方案,优点是分区逻辑可控,缺点是需要自己处理数据路由、高可用、故障转移等问题。

2、代理方案,优点是简化客户端分布式逻辑和升级维护便利,缺点是加重架构部署复杂度和性能损耗。

现在官方为我们提供了专有的集群方案:Redis Cluster,它非常优雅地解决了Redis集群方面的问题,因此理解应用好 Redis Cluster将极大地解放我们使用分布式Redis 的工作量。

集群前置知识

数据分布理论

分布式数据库首先要解决把整个数据集按照分区规则映射到多个节点的问题,即把数据集划分到多个节点上,每个节点负责整体数据的一个子集。。

需要重点关注的是数据分区规则。常见的分区规则有哈希分区和顺序分区两种,哈希分区离散度好、数据分布业务无关、无法顺序访问,顺序分区离散度易倾斜、数据分布业务相关、可顺序访问。

节点取余分区

使用特定的数据,如Redis的键或用户ID,再根据节点数量N使用公式:
hash(key)%N计算出哈希值,用来决定数据映射到哪一个节点上。这种方案存在一个问题:当节点数量变化时,如扩容或收缩节点,数据节点映射关系需要重新计算,会导致数据的重新迁移。

这种方式的突出优点是简单性,常用于数据库的分库分表规则,一般采用预分区的方式,提前根据数据量规划好分区数,比如划分为512或1024张表,保证可支撑未来一段时间的数据量,再根据负载情况将表迁移到其他数据库中。扩容时通常采用翻倍扩容,避免数据映射全部被打乱导致全量迁移的情况,如图10-2所示。

一致性哈希分区

一致性哈希分区( Distributed
Hash Table)实现思路是为系统中每个节点分配一个 token,范围一般在0~23,这些token构成一个哈希环。数据读写执行节点查找操作时,先根据key计算hash值,然后顺时针找到第一个大于等于该哈希值的token节点。例如:

集群中有三个节点(Node1、Node2、Node3),五个键(key1、key2、key3、key4、key5),其路由规则为:

image.png

当集群中增加节点时,比如当在Node2和Node3之间增加了一个节点Node4,此时再访问节点key4时,不能在Node4中命中,更一般的,介于Node2和Node4之间的key均失效,这样的失效方式太过于“集中”和“暴力”,更好的方式应该是“平滑”和“分散”地失效。

image.png

这种方式相比节点取余最大的好处在于加入和删除节点只影响哈希环中相邻的节点,对其他节点无影响。但一致性哈希分区存在几个问题:

1、当使用少量节点时,节点变化将大范围影响哈希环中数据映射,因此这种方式不适合少量数据节点的分布式方案。

2、增加节点只能对下一个相邻节点有比较好的负载分担效果,例如上图中增加了节点Node4只能够对Node3分担部分负载,对集群中其他的节点基本没有起到负载分担的效果;类似地,删除节点会导致下一个相邻节点负载增加,而其他节点却不能有效分担负载压力。

正因为一致性哈希分区的这些缺点,一些分布式系统采用虚拟槽对一致性哈希进行改进,比如虚拟一致性哈希分区。

虚拟一致性哈希分区

image.png

为了在增删节点的时候,各节点能够保持动态的均衡,将每个真实节点虚拟出若干个虚拟节点,再将这些虚拟节点随机映射到环上。此时每个真实节点不再映射到环上,真实节点只是用来存储键值对,它负责接应各自的一组环上虚拟节点。当对键值对进行存取路由时,首先路由到虚拟节点上,再由虚拟节点找到真实的节点。

如下图所示,三个节点真实节点:Node1、Node2和Node3,每个真实节点虚拟出三个虚拟节点:X#V1、X#V2和X#V3,这样每个真实节点所负责的hash空间不再是连续的一段,而是分散在环上的各处,这样就可以将局部的压力均衡到不同的节点,虚拟节点越多,分散性越好,理论上负载就越倾向均匀。

虚拟槽分区

Redis则是利用了虚拟槽分区,可以算上面虚拟一致性哈希分区的变种,它使用分散度良好的哈希函数把所有数据映射到一个固定范围的整数集合中,整数定义为槽( slot)。这个范围一般远远大于节点数,比如RedisCluster槽范围是0 ~16383。槽是集群内数据管理和迁移的基本单位。采用大范围槽的主要目的是为了方便数据拆分和集群扩展。每个节点会负责一定数量的槽。

比如集群有3个节点,则每个节点平均大约负责5460个槽。由于采用高质量的哈希算法,每个槽所映射的数据通常比较均匀,将数据平均划分到5个节点进行数据分区。Redis Cluster就是采用虚拟槽分区,下面就介绍Redis 数据分区方法。

image.png

为什么槽的范围是0 ~16383?

为什么槽的范围是0 ~16383,也就是说槽的个数在16384个?redis的作者在github上有个回答:https://github.com/redis/redis/issues/2576

image.png

这个意思是:

Redis集群中,在握手成功后,连个节点之间会定期发送ping/pong消息,交换数据信息,集群中节点数量越多,消息体内容越大,比如说10个节点的状态信息约1kb,同时redis集群内节点,每秒都在发ping消息。例如,一个总节点数为200的Redis集群,默认情况下,这时ping/pong消息占用带宽达到25M。

那么如果槽位为65536,发送心跳信息的消息头达8k,发送的心跳包过于庞大,非常浪费带宽。

其次redis的集群主节点数量基本不可能超过1000个。集群节点越多,心跳包的消息体内携带的数据越多。如果节点过1000个,也会导致网络拥堵。因此redis作者,不建议redis cluster节点数量超过1000个。

那么,对于节点数在1000以内的redis cluster集群,16384个槽位够用了,可以以确保每个 master 有足够的插槽,没有必要拓展到65536个。

再者Redis主节点的配置信息中,它所负责的哈希槽是通过一张bitmap的形式来保存的,在传输过程中,会对bitmap进行压缩,但是如果bitmap的填充率slots / N很高的话(N表示节点数),也就是节点数很少,而哈希槽数量很多的话,bitmap的压缩率就很低,也会浪费资源。

所以Redis作者决定取16384个槽,作为一个比较好的设计权衡。

Redis数据分区

Redis Cluser采用虚拟槽分区,所有的键根据哈希函数映射到0 ~16383整数槽内,计算公式:slot=CRC16(key) &16383。每一个节点负责维护―部分槽以及槽所映射的键值数据。

image.pngimage.png

Redis 虚拟槽分区的特点

1、解耦数据和节点之间的关系,简化了节点扩容和收缩难度。

2、节点自身维护槽的映射关系,不需要客户端或者代理服务维护槽分区元数据。口支持节点、槽、键之间的映射查询,用于数据路由、在线伸缩等场景。

3、数据分区是分布式存储的核心,理解和灵活运用数据分区规则对于掌握Redis Cluster非常有帮助。

集群功能限制

Redis集群相对单机在功能上存在一些限制,需要开发人员提前了解,在使用时做好规避。限制如下:

1、 key批量操作支持有限。如mset、mget,目前只支持具有相同slot值的key执行批量操作。对于映射为不同slot值的key由于执行mget、mget等操作可能存在于多个节点上因此不被支持。

2、key事务操作支持有限。同理只支持多key在同一节点上的事务操作,当多个key分布在不同的节点上时无法使用事务功能。

3、key作为数据分区的最小粒度,因此不能将一个大的键值对象如hash、list等映射到不同的节点。

4、不支持多数据库空间。单机下的Redis可以支持16个数据库,集群模式下只能使用一个数据库空间,即 db 0。

5、复制结构只支持一层,从节点只能复制主节点,不支持嵌套树状复制结构。

搭建集群

介绍完Redis集群分区规则之后,下面我们开始搭建Redis集群。搭建集群有几种方式:

1)依照Redis 协议手工搭建,使用cluster meet、cluster addslots、cluster replicate命令。

2)5.0之前使用由ruby语言编写的redis-trib.rb,在使用前需要安装ruby语言环境。

3)5.0及其之后redis摒弃了redis-trib.rb,将搭建集群的功能合并到了redis-cli。

我们简单点,采用第三种方式搭建。集群中至少应该有奇数个节点,所以至少有三个节点,官方推荐三主三从的配置方式,我们就来搭建一个三主三从的集群。

节点配置

我们现在规定,主节点的端口为6900、6901、6902,从节点的端口为6930、6931、6932。

首先需要配置节点的conf文件,这个比较统一,所有的节点的配置文件都是类似的,我们以端口为6900的节点举例:

port 6900# 这个部分是为了在一台服务上启动多台Redis服务,相关的资源要改
pidfile /var/run/redis_6900.pid
logfile "/home/lijin/redis/redis/log/6900.log"
dir "/home/lijin/redis/redis/data/"
dbfilename dump-6900.rdb# Cluster Config
daemonize yes
cluster-enabled yes
cluster-config-file nodes-6900.conf
cluster-node-timeout 15000
appendonly yes
appendfilename "appendonly-6900.aof"

在上述配置中,以下配置是集群相关的:

cluster-enabled yes # 是否启动集群模式(集群需要修改为yes)cluster-node-timeout 15000 指定集群节点超时时间(打开注释即可)cluster-config-file nodes-6900.conf  指定集群节点的配置文件(打开注释即可),这个文件不需要手工编辑,它由Redis节点创建和更新.每个Redis群集节点都需要不同的群集配置文件.确保在同一系统中运行的实例没有重叠群集配置文件名appendonly yes  指定redis集群持久化方式(默认rdb,建议使用aof方式,此处是否修改不影响集群的搭建)

集群创建

创建集群随机主从节点
./redis-cli --cluster create 127.0.0.1:6900 127.0.0.1:6901 127.0.0.1:6902 127.0.0.1:6930 127.0.0.1:6931
127.0.0.1:6932 --cluster-replicas 1

说明:–cluster-replicas 参数为数字,1表示每个主节点需要1个从节点。

通过该方式创建的带有从节点的机器不能够自己手动指定主节点,不符合我们的要求。所以如果需要指定的话,需要自己手动指定,先创建好主节点后,再添加从节点。

指定主从节点
创建集群主节点
./redis-cli --cluster create  127.0.0.1:6900 127.0.0.1:6901 127.0.0.1:6902

image.png

注意:

1、请记录下每个M后形如“dcd818ab48166ccea9563544839187ffa5d79f62”的字符串,在后面添加从节点时有用;

2、如果服务器存在着防火墙,那么在进行安全设置的时候,除了redis服务器本身的端口,比如6900 要加入允许列表之外,Redis服务在集群中还有一个叫集群总线端口,其端口为客户端连接端口加上10000,即 6900 + 10000 = 16900 。所以开放每个集群节点的客户端端口和集群总线端口才能成功创建集群!

添加集群从节点

命令类似:

./redis-cli --cluster add-node 127.0.0.1:6930 127.0.0.1:6900 --cluster-slave --cluster-master-id dcd818ab48166ccea9563544839187ffa5d79f62

说明:上述命令把6382节点加入到6379节点的集群中,并且当做node_id为dcd818ab48166ccea9563544839187ffa5d79f62 的从节点。如果不指定 --cluster-master-id 会随机分配到任意一个主节点

效果如下:

image.png

第二个从,第三个从类似。

集群管理

检查集群
./redis-cli --cluster check 127.0.0.1:6900 --cluster-search-multiple-owners

说明:任意连接一个集群节点,进行集群状态检查

集群信息查看
./redis-cli --cluster info 127.0.0.1:6900

说明:检查key、slots、从节点个数的分配情况

修复集群
redis-cli --cluster fix 127.0.0.1:6900 --cluster-search-multiple-owners

说明:修复集群和槽的重复分配问题

设置集群的超时时间
redis-cli --cluster set-timeout 127.0.0.1:6900 10000

说明:连接到集群的任意一节点来设置集群的超时时间参数cluster-node-timeout

集群配置
redis-cli --cluster call 127.0.0.1:6900 config set requirepass ccredis-cli --cluster call 127.0.0.1:6900 config set masterauth ccredis-cli --cluster call 127.0.0.1:6900 config rewrite

说明:连接到集群的任意一节点来对整个集群的所有节点进行设置。

rediscli_cluster__238">redis-cli –cluster 参数参考

redis-cli --cluster help
Cluster Manager Commands:create         host1:port1 ... hostN:portN   #创建集群--cluster-replicas <arg>      #从节点个数check          host:port                     #检查集群--cluster-search-multiple-owners #检查是否有槽同时被分配给了多个节点info           host:port                     #查看集群状态fix            host:port                     #修复集群--cluster-search-multiple-owners #修复槽的重复分配问题reshard        host:port                     #指定集群的任意一节点进行迁移slot,重新分slots--cluster-from <arg>          #需要从哪些源节点上迁移slot,可从多个源节点完成迁移,以逗号隔开,传递的是节点的node id,还可以直接传递--from all,这样源节点就是集群的所有节点,不传递该参数的话,则会在迁移过程中提示用户输入--cluster-to <arg>            #slot需要迁移的目的节点的node id,目的节点只能填写一个,不传递该参数的话,则会在迁移过程中提示用户输入--cluster-slots <arg>         #需要迁移的slot数量,不传递该参数的话,则会在迁移过程中提示用户输入。--cluster-yes                 #指定迁移时的确认输入--cluster-timeout <arg>       #设置migrate命令的超时时间--cluster-pipeline <arg>      #定义cluster getkeysinslot命令一次取出的key数量,不传的话使用默认值为10--cluster-replace             #是否直接replace到目标节点rebalance      host:port                                      #指定集群的任意一节点进行平衡集群节点slot数量 --cluster-weight <node1=w1...nodeN=wN>         #指定集群节点的权重--cluster-use-empty-masters                    #设置可以让没有分配slot的主节点参与,默认不允许--cluster-timeout <arg>                        #设置migrate命令的超时时间--cluster-simulate                             #模拟rebalance操作,不会真正执行迁移操作--cluster-pipeline <arg>                       #定义cluster getkeysinslot命令一次取出的key数量,默认值为10--cluster-threshold <arg>                      #迁移的slot阈值超过threshold,执行rebalance操作--cluster-replace                              #是否直接replace到目标节点add-node       new_host:new_port existing_host:existing_port  #添加节点,把新节点加入到指定的集群,默认添加主节点--cluster-slave                                #新节点作为从节点,默认随机一个主节点--cluster-master-id <arg>                      #给新节点指定主节点del-node       host:port node_id                              #删除给定的一个节点,成功后关闭该节点服务call           host:port command arg arg .. arg               #在集群的所有节点执行相关命令set-timeout    host:port milliseconds                         #设置cluster-node-timeoutimport         host:port                                      #将外部redis数据导入集群--cluster-from <arg>                           #将指定实例的数据导入到集群--cluster-copy                                 #migrate时指定copy--cluster-replace                              #migrate时指定replace

http://www.ppmy.cn/ops/166823.html

相关文章

Harmony NEXT开发之创建自定义组件

目录 自定义组件的基本用法 自定义组件的基本结构 成员函数/变量 自定义组件的参数规定 build()函数 自定义组件通用样式 在ArkUI中&#xff0c;UI显示的内容均为组件&#xff0c;由框架直接提供的称为系统组件&#xff0c;由开发者定义的称为自定义组件。在进行 UI 界面…

基于 easyExcel 3.1.5依赖的包 实现动态表头 动态表格内容

1.需求&#xff1a;需要导出的EXCEL示例&#xff1a; 2.依赖&#xff1a; <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.5</version></dependency> 3.工具类&#xff1a; p…

ZooKeeper的五大核心作用及其在分布式系统中的关键价值

引言 在分布式系统的复杂架构中&#xff0c;协调多个节点的一致性、可靠性和高可用性始终是技术挑战的核心。​Apache ZooKeeper作为业界广泛采用的分布式协调服务&#xff0c;凭借其简洁的树形数据模型&#xff08;ZNode&#xff09;和高效的原子广播协议&#xff08;ZAB&…

【多线程】线程不安全问题

文章目录 多线程不安全的原因大的层面->多线程是随机调度的容易产生死锁 小的层面->内存不可见性引入volatile关键字 指令重排序不是原子性带来的隐患 synchronized锁的互斥性及作用可重入性——解决死锁 wait()和notify()两个突然迸发出的疑问 多线程不安全的原因 大的…

QVariant:Qt中万能类型的使用与理解

目录 1.引言 2.QVariant的用法 2.1.包含头文件 2.2.基本类型的存储与获取 2.3.自定义类型的存储与获取 2.4.枚举类型的存储与获取 2.5.类型检查与转换 2.6.容器类型的存储与获取 3.枚举的问题 4.信号槽中使用自定义结构体 4.1.使用QVariant转换 4.2.直接传递自定义…

走进Java:Integer128陷阱

❀❀❀ 大佬求个关注~祝您开心每一天 ❀❀❀ 目录 一、Integer和int的联系 1.1 Integer和int的区别 1.2 Integer和int的相互转换 二、装箱 三、拆箱 今天在学习Java的时候遇到了下面几个问题。 public static void main(String[] args) {Integer num1 127;Integer nu…

34个适合机械工程及自动化专业【论文选题】

论文选题具有极其重要的意义&#xff0c;它直接关系到论文的质量、价值以及研究的可行性和顺利程度。选题明确了研究的具体领域和核心问题&#xff0c;就像给研究旅程设定了方向和目的地。例如&#xff0c;选择 “人工智能在医疗影像诊断中的应用” 这一选题&#xff0c;就确定…

算法竞赛-基础算法-位运算

目录 1.快速幂 2.快速乘 3.lowbit(n) 4.其他 5.相关题目 6.小结 引言&#xff1a;位运算的主要特点之一是在二进制表示下不进位&#xff0c;一下为一些基础的位运算操作&#xff1a; 与或非异或and,&or,|not,~xor 1.快速幂 快速幂的计算原理就是基于位运算&#x…