numpy常用函数详解

ops/2025/3/12 8:30:48/

在深度神经网络代码中经常用到numpy库的一些函数,很多看过之后很容易忘记,本文对经常使用的函数进行归纳总结。

np.arange

arange是numpy一个常用的函数,该函数主要用于创建等差数列。它的使用方法如下所示:

numpy.arange([start,] stop[, step])

参数说明:

  • start:起始值,默认为0
  • stop:结束值(不包含),左闭右开
  • step:步长(可选,默认为1)

注意该函数返回值类型为“<class 'numpy.ndarray'>”

基础用法

python">import numpy as np# 1. 只有一个参数(终点)
a = np.arange(5)
print(a)  # [0 1 2 3 4]
print(type(a))  #<class 'numpy.ndarray'> 返回类型# 2. 指定起点和终点
b = np.arange(2, 6)
print(b)  # [2 3 4 5]# 3. 指定起点、终点和步长
c = np.arange(0, 10, 2)
print(c)  # [0 2 4 6 8]# 4. 负步长
d = np.arange(5, -1, -1)
print(d)  # [5 4 3 2 1 0]

另外arange也支持浮点数步长,请看下面的例子

python">import numpy as npa = np.arange(1,2,0.2)
print(a)  #[1.0,1.2,1.4,1.6,1.8]

np.array

这是numpy最基础也是最重要的数据结构。array函数创建序列需要从列表或者元组进行创建,这一点是与arange不相同的。

基础用法

python">import numpy as np# 1. 从列表创建
arr1 = np.array([1, 2, 3, 4, 5])
print("一维数组:", arr1)# 2. 从嵌套列表创建多维数组
arr2 = np.array([[1, 2, 3], [4, 5, 6]])
print("二维数组:\n", arr2)# 3. 指定数据类型
arr3 = np.array([1, 2, 3], dtype=float)
print("浮点数数组:", arr3)# 4. 从元组创建
arr4 = np.array((1, 2, 3))
print("从元组创建:", arr4)

 数组属性

python">import numpy as npdef array_properties():arr = np.array([[1, 2, 3], [4, 5, 6]])print("维度:", arr.ndim)          # 2print("形状:", arr.shape)         # (2, 3)print("大小:", arr.size)          # 6print("数据类型:", arr.dtype)     # int64print("每个元素的字节数:", arr.itemsize)print("总字节数:", arr.nbytes)print("数据存储顺序:", arr.flags)

常见的数组操作

python">import numpy as np# 1. 基本操作
def basic_operations():arr = np.array([[1, 2, 3], [4, 5, 6]])# 重塑reshaped = arr.reshape(3, 2)print("重塑后:\n", reshaped)# 转置transposed = arr.Tprint("转置后:\n", transposed)# 展平flattened = arr.flatten()print("展平后:", flattened)# 2. 数组切片
def array_slicing():arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])# 基本切片print("前两行:\n", arr[:2])print("第二列:", arr[:, 1])print("子矩阵:\n", arr[1:3, 1:3])# 高级索引indices = np.array([0, 2])print("选择行:", arr[indices])# 布尔索引mask = arr > 5print("大于5的元素:", arr[mask])

数组广播

python">import numpy as npdef broadcasting_examples():# 1. 标量广播arr = np.array([[1, 2, 3], [4, 5, 6]])print("加标量:\n", arr + 1)# 2. 数组广播row = np.array([1, 2, 3])print("加行向量:\n", arr + row)col = np.array([[1], [2]])print("加列向量:\n", arr + col)# 3. 广播规则示例a = np.array([[1, 2, 3], [4, 5, 6]])  # shape: (2, 3)b = np.array([10, 20, 30])            # shape: (3,)print("广播结果:\n", a + b)broadcasting_examples()
#输出
加标量:[[2 3 4][5 6 7]]
加行向量:[[2 4 6][5 7 9]]
加列向量:[[2 3 4][6 7 8]]
广播结果:[[11 22 33][14 25 36]]

视图和副本

python">def views_and_copies():arr = np.array([[1, 2, 3], [4, 5, 6]])# 视图view = arr.view()view[0, 0] = 99print("原数组被修改:\n", arr)# 副本copy = arr.copy()copy[0, 0] = 88print("原数组未被修改:\n", arr)#输出
视图: [[1 2 3][4 5 6]]
原数组被修改:[[99  2  3][ 4  5  6]]
原数组未被修改:[[99  2  3][ 4  5  6]]

view() 创建一个数组视图,它与原数组共享相同的数据,但可以有不同的形状或数据类型。关键点是:

  • 视图是共享数据的新数组对象
  • 修改视图中的数据会影响原数组
  • 视图的形状改变不影响原数组

 看看下面的例子:

python">import numpy as npdef dtype_views():# 1. 创建整数数组arr = np.array([1, 2, 3, 4], dtype=np.int32)# 2. 创建float类型的视图view_float = arr.view(np.float32)print("原数组:", arr)print("原数组类型:", arr.dtype)print("原数组id:",id(arr))print("视图:", view_float)print("视图类型:", view_float.dtype)print("原数组id:",id(view_float))
dtype_views()#输出
原数组: [1 2 3 4]
原数组类型: int32
原数组id: 136153673669328
视图: [1.e-45 3.e-45 4.e-45 6.e-45]
视图类型: float32
原数组id: 136153673387632

通过上面的结果可以看到,view方法返回的对象与原数组的对象id是不同的,但是他们的实际数据是存储在同一个位置的所以修改view,原数组也会修改。这里就不在深入介绍了。

结论:

  • 视图不复制数据,只创建新的数组对象
  • 视图创建了新的数组对象,但指向相同的数据

实际应用场景

python">import numpy as np# 1. 数据类型转换而不复制
def efficient_type_conversion():# 创建大数组arr = np.arange(1000000, dtype=np.int32)# 使用视图转换类型(高效)float_view = arr.view(np.float32)# 对比复制方式float_copy = arr.astype(np.float32)print("视图是否共享内存:", np.shares_memory(arr, float_view))print("副本是否共享内存:", np.shares_memory(arr, float_copy))# 2. 图像处理中的应用
def image_processing():# 创建模拟图像数据img = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]], dtype=np.uint8)# 创建展平视图进行处理flat_view = img.view()flat_view.shape = (-1,)# 处理数据flat_view += 10print("处理后的图像:\n", img)

np.where

这是一个非常强大的函数,它的主要作用:

  1. 条件查找:返回满足条件的元素索引
  2. 条件选择:根据条件从两个数组中选择元素

条件查找

python">import numpy as npdef basic_where:arr = np.array([1, 2, 3, 4, 5, 4, 3, 2, 1])  #array创建序列需要基于列表创建#找出所有大于3的索引和对应的值indices = np.where(arr > 3)print(f'索引:{indices}')print(f'对应的值:{arr[indices]}')# 找出所有偶数的索引even_indices = np.where(arr % 2 == 0)print(f"偶数索引: {even_indices}")print(f"偶数值: {arr[even_indices]}")#多维数组示例arr_2d = np.array([[1,2,3],[4,5,6],[7,8,9]])rows, cols= np.where(arr_2d > 5)print("行索引:", rows)  #行索引: [1 2 2 2]print("列索引:", cols)  #列索引: [2 0 1 2]print("对应的值:", arr_2d[rows, cols]) #对应的值: [6 7 8 9]result = np.where(arr_2d > 5)print("结果:",result)  #行索引: (array([1, 2, 2, 2]), array([2, 0, 1, 2]))

由此可见,np.where对于二维数组或多维数组进行条件检查,返回的是各个维度索引的组成的元组。

条件选择

python">import numpy as np# 基本条件选择
def conditional_selection():arr = np.array([1, 2, 3, 4, 5])# 根据条件选择值:# where(condition, x, y) # 当condition为True时选择x,为False时选择yresult = np.where(arr > 3, arr, -1)print(result)  # [-1 -1 -1  4  5]# 使用数组作为替换值result2 = np.where(arr % 2 == 0, arr * 2, arr * 3)print(result2)  # [3 4 9 8 15]# 多维数组条件选择
def multidim_conditional():arr_2d = np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])# 将大于5的元素替换为100result = np.where(arr_2d > 5, 100, arr_2d)print(result)  #[[  1   2   3]# [  4   5 100]#[100 100 100]]

np.linspace


http://www.ppmy.cn/ops/165153.html

相关文章

llama.cpp编译

llam.cpp编译 1. 下载&编译 git clone https://github.com/ggml-org/llama.cpp cmake -S . -B build2. 下载模型验证 # 下载地址 https://huggingface.co/filipealmeida/open-llama-7b-v2-open-instruct-GGUF/blob/main/ggml-model-Q4_0.gguf# 验证 ./llama-cli.exe -m …

Python第十六课:深度学习入门 | 神经网络解密

🎯 本节目标 理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生) 1. 神经元对比 生物神经元人工神经元树突接收信号输入层接收特…

使用DeepSeek+蓝耘快速设计网页简易版《我的世界》小游戏

前言&#xff1a;如今&#xff0c;借助先进的人工智能模型与便捷的云平台&#xff0c;即便是新手开发者&#xff0c;也能开启创意游戏的设计之旅。DeepSeek 作为前沿的人工智能模型&#xff0c;具备强大的功能与潜力&#xff0c;而蓝耘智算云平台则为其提供了稳定高效的运行环境…

python学习第三天

条件判断 条件判断使用if、elif和else关键字。它们用于根据条件执行不同的代码块。 # 条件判断 age 18 if age < 18:print("你还是个孩子&#xff01;") elif age 18:print("永远十八岁&#xff01;") else:print("你还年轻&#xff01;")…

【2025】基于springboot+uniapp的乡村旅游小程序系统统(源码、万字文档、图文修改、调试答疑)农家乐预约

乡村旅游小程序系统通过 Spring Boot 与 uniapp 技术栈的深度整合&#xff0c;为乡村旅游产业打造了一个功能全面、交互流畅、性能稳定的综合服务平台。系统根据不同角色&#xff08;管理员、商家、用户&#xff09;的业务需求&#xff0c;提供了针对性的功能模块&#xff0c;实…

requests中post中data=None, json=None两个参数区别

在 requests.post() 方法中&#xff0c;data 和 json 主要用于发送请求体&#xff0c;但它们的作用和格式有所不同。 1. data 参数 用途&#xff1a;用于发送表单数据或原始二进制数据。格式&#xff1a; 可以是 字典&#xff08;dict&#xff09;&#xff08;默认会编码为 a…

python-leetcode-反转字符串中的元音字母

345. 反转字符串中的元音字母 - 力扣&#xff08;LeetCode&#xff09; 使用双指针的方法高效地反转字符串中的元音字母。以下是 Python 代码实现&#xff1a; def reverseVowels(s: str) -> str:vowels set("aeiouAEIOU")s list(s) # 将字符串转换为列表&…

【鸿蒙开发】Hi3861学习笔记- GPIO之LED

00. 目录 文章目录 00. 目录01. GPIO概述02. 硬件设计03. 软件设计04. 实验现象05. 附录 01. GPIO概述 GPIO&#xff08;General-purpose input/output&#xff09;即通用型输入输出。通常&#xff0c;GPIO控制器通过分组的方式管理所有GPIO管脚&#xff0c;每组GPIO有一个或多…