MySQL进阶-关联查询优化

ops/2025/3/9 8:35:01/

采用左外连接

下面开始 EXPLAIN 分析

EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

结论:type 有All  ,代表着全表扫描,效率较差

 添加索引优化

ALTER TABLE book ADD INDEX Y ( card); #【被驱动表】,可以避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

可以看到第二行的 type 变为了 ref,rows 也变成了优化比较明显。这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,所以 右边是我们的关键点,一定需要建立索引 。  也就是left join 右边所关联的表的关联字段一定要建立索引

 只是对左边的表建立索引的话,是没有效果的,可以通过rows这一列看到,type表要读取的记录仍然是20条。

ALTER TABLE `type` ADD INDEX X (card); #【驱动表】,无法避免全表扫描
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

把右边的表的索引删除,可以发现现在又要走全表扫描了 

DROP INDEX Y ON book;
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` LEFT JOIN book ON type.card = book.card;

 采用内连接

删除先前的索引

drop index X on type;
drop index Y on book;(如果已经删除了可以不用再执行该操作)

换成 inner join(MySQL自动选择驱动表)

EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

 添加索引优化

向book表添加索引后,book自动成为被驱动表,提高了查询效率。

ALTER TABLE book ADD INDEX Y (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

如果新增了type表的索引,此时两个表都有索引,优化器会选择小数据量的表作为驱动表,用来驱动大表。

ALTER TABLE type ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM type INNER JOIN book ON type.card=book.card;

对于内连接来说,查询优化器可以决定谁作为驱动表,谁作为被驱动表出现的,接下来把type表的索引删了。可以看到有索引的book表又作为了被驱动表

DROP INDEX X ON `type`;
EXPLAIN SELECT SQL_NO_CACHE * FROM TYPE INNER JOIN book ON type.card=book.card;

 向type表里面添加索引,此时又变成了被驱动表了

ALTER TABLE `type` ADD INDEX X (card);
EXPLAIN SELECT SQL_NO_CACHE * FROM `type` INNER JOIN book ON type.card=book.card;

join语句原理

join方式连接多个表,本质就是各个表之间数据的循环匹配。MySQL5.5版本之前,MySQL只支持一种表间关联方式,就是嵌套循环(Nested Loop Join)。如果关联表的数据量很大,则join关联的执行时间会很长。在MySQL5.5以后的版本中,MySQL通过引入BNLJ算法来优化嵌套执行。

驱动表和被驱动表

驱动表就是主表,被驱动表就是从表、非驱动表。

  • 对于内连接来说:

A一定是驱动表吗?不一定,优化器会根据你查询语句做优化,决定先查哪张表。先查询的那张表就是驱动表,反之就是被驱动表。通过explain关键字可以查看。

SELECT * FROM A JOIN B ON ...
  • 对于外连接来说:
SELECT * FROM A LEFT JOIN B ON ...
# 或
SELECT * FROM B RIGHT JOIN A ON ... 

Simple Nested-Loop Join (简单嵌套循环连接)

算法相当简单,从表A中取出一条数据1,遍历表B,将匹配到的数据放到result.. 以此类推,驱动表A中的每一条记录与被驱动表B的记录进行判断:

可以看到这种方式效率是非常低的,以上述表A数据100条,表B数据1000条计算,则A*B=10万次。开销统计如下。当然mysql肯定不会这么粗暴的去进行表的连接,所以就出现了后面的两种对Nested-Loop Join优化算法。

Index Nested-Loop Join (索引嵌套循环连接)

Index Nested-Loop Join其优化的思路主要是为了减少内存表数据的匹配次数,所以要求被驱动表上必须有索引才行。通过外层表匹配条件直接与内层表索引进行匹配,避免和内存表的每条记录去进行比较,这样极大的减少了对内存表的匹配次数。就是利用索引来提高匹配效率

 

驱动表中的每条记录通过被驱动表的索引进行访问,因为索引查询的成本是比较固定的,故mysql优化器都倾向于使用记录数少的表作为驱动表(外表)。如果被驱动表加索引,效率是非常高的,但如果索引不是主键索引,所以还得进行一次回表查询。相比,被驱动表的索引是主键索引,效率会更高。

 Block Nested-Loop Join(块嵌套循环连接)

 之前是将驱动表逐条与非驱动表的记录进行匹配,现在是引入join buffer缓冲区,将驱动表的记录缓冲到缓冲区,然后进行批量匹配,而不是逐条匹配。

Join小结

1、整体效率比较:INLJ > BNLJ > SNLJ

2、永远用小结果集驱动大结果集(其本质就是减少外层循环的数据数量)(小的度量单位指的是表行数 * 每行大小)

select t1.b,t2.* from t1 straight_join t2 on (t1.b=t2.b) where t2.id<=100; # 推荐
select t1.b,t2.* from t2 straight_join t1 on (t1.b=t2.b) where t2.id<=100; # 不推荐

3、为被驱动表匹配的条件增加索引(减少内存表的循环匹配次数)

4、增大join buffer size的大小(一次索引的数据越多,那么内层包的扫描次数就越少)

5、减少驱动表不必要的字段查询(字段越少,join buffer所缓存的数据就越多

Hash Join

从MySQL的8.0.20版本开始将废弃BNLJ,因为从MySQL8.0.18版本开始就加入了hash join默认都会使用hash join

  • Nested Loop:

    对于被连接的数据子集较小的情况,Nested Loop是个较好的选择。

  • Hash Join是做大数据集连接时的常用方式,优化器使用两个表中较小(相对较小)的表利用Join Key在内存中建立散列表,然后扫描较大的表并探测散列表,找出与Hash表匹配的行。

    • 这种方式适合于较小的表完全可以放于内存中的情况,这样总成本就是访问两个表的成本之和。

    • 在表很大的情况下并不能完全放入内存,这时优化器会将它分割成若干不同的分区,不能放入内存的部分就把该分区写入磁盘的临时段,此时要求有较大的临时段从而尽量提高I/O的性能。

    • 它能够很好的工作于没有索引的大表和并行查询的环境中,并提供最好的性能。大多数人都说它是Join的重型升降机。Hash Join只能应用于等值连接(如WHERE A.COL1 = B.COL2),这是由Hash的特点决定的。

 

小结

  • 保证被驱动表的JOIN字段已经创建了索引

  • 需要JOIN 的字段,数据类型保持绝对一致

  • LEFT JOIN 时,选择小表作为驱动表, 大表作为被驱动表 。减少外层循环的次数。

  • INNER JOIN 时,MySQL会自动将 小结果集的表选为驱动表 。选择相信MySQL优化策略。

  • 能够直接多表关联的尽量直接关联,不用子查询。(减少查询的趟数)

  • 不建议使用子查询,建议将子查询SQL拆开结合程序多次查询,或使用 JOIN 来代替子查询。

  • 衍生表建不了索引


http://www.ppmy.cn/ops/164333.html

相关文章

【机械臂】Windows11下配置KINOVA GEN3机械臂的Python环境并运行

Windows11下配置KINOVA GEN3机械臂的Python环境并运行 一、开机前的准备 检查电源连接 确保机械臂的电源适配器已正确连接到机械臂的电源接口&#xff0c;并且另一端已连接到电源插座。将红色按钮按起来&#xff0c;而不是按下去&#xff0c;按下去是紧急停止。 检查安全事项…

(最新教程)Cursor Pro订阅升级开通教程,使用支付宝订阅Cursor Pro Plus

一、如何使用Cursor &#xff1f; 目前要使用Cursor - The AI Code Editor&#xff0c;直接去下载安装就可以了&#xff0c;不过基础版只能用两周&#xff0c;如果需要继续使用&#xff0c;就要订阅pro plus或者企业版了。 二、如何订阅Cursor Pro Plus &#xff1f; 因为基础…

淘宝母婴购物数据可视化分析(基于脱敏公开数据集)

一、前言 以下是“阿里天池”上的比赛介绍&#xff0c;数据集也是源自于那里的公开数据集&#xff0c;数据经过脱敏处理&#xff0c;避免了用户隐私问题。下面是数据集和任务的介绍&#xff1a; 二、数据导入与数据预处理 import pandas as pd # 导入交易信息表 trade_inf p…

深度优先搜索(DFS)和广度优先搜索(BFS)——c#实现

一、深度优先搜索&#xff08;DFS&#xff09; 原理&#xff1a; 沿着分支尽可能深入&#xff0c;直到到达叶子节点&#xff0c;然后回溯探索其他分支 类似走迷宫时优先选择一条路走到黑&#xff0c;碰壁再回退 数据结构&#xff1a;栈&#xff08;Stack&#xff09;或递归实…

【JavaEE进阶】图书管理系统 - 捌

目录 &#x1f343;前言 &#x1f38d;统一数据返回格式 &#x1f6a9;快速入门 &#x1f6a9;存在问题 &#x1f6a9;统一格式返回的优点 &#x1f340;统一异常处理 &#x1f332;前端代码的修改 &#x1f6a9;登录页面 &#x1f6a9;图书列表 &#x1f6a9;删除图…

树莓派5首次开机保姆级教程(无显示器通过VNC连接树莓派桌面)

第一次开机详细步骤 步骤一&#xff1a;树莓派系统烧录1 搜索打开烧录软件“Raspberry Pi Imager”2 选择合适的设备、系统、SD卡3 烧录配置选项 步骤二&#xff1a;SSH远程树莓派1 树莓派插电2 网络连接&#xff08;有线或无线&#xff09;3 确定树莓派IP地址 步骤三&#xff…

linux固定IP并解决虚拟机无法ping其他电脑问题

linux固定IP并解决虚拟机无法ping其他电脑问题 1.找到网卡文件 vim /etc/sysconfig/network-scripts/ifcfg-ens33 2.编辑文件信息 BOOTPROTO 这个dhcp改为static#添加以下内容IPADDR<你的IP地址>NETMASK<子网掩码>&#xff0c;例如255.255.255.0。GATEWAY<网…

基于模糊PID控制器的混合动力汽车EMS能量管理控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 混合动力汽车&#xff08;Hybrid Electric Vehicle&#xff0c;HEV&#xff09;结合了传统燃油发动机和电动驱动系统的优点&#xff0c;能够有效提高燃油经济性和降低尾气排放…