分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机多特征分类预测

ops/2025/3/4 0:00:15/

分类预测 | Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机多特征分类预测

目录

分类效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机多特征分类预测(完整源码和数据),优化参数为,优化RBF核函数gam和sig,运行环境为Matlab2018及以上。
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换excel数据就可以用;
3.程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式资源处直接下载Matlab实现GWO-LSSVM灰狼算法优化最小二乘支持向量机多特征分类预测(完整源码和数据)。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集%
P_train = res(1: 250, 1: 12)';
T_train = res(1: 250, 13)';
M = size(P_train, 2);P_test = res(251: end, 1: 12)';
T_test = res(251: end, 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
t_train = T_train;
t_test  = T_test;%% LS参数设置
type        = 'c';             % 模型类型 分类
kernel_type = 'RBF_kernel';    % 线性核函数
codefct     = 'code_OneVsOne'; % 一对一编码分类
fun = @getObjValue;  % 目标函数
dim = 2;             % 优化参数个数
ub  = [300, 300];  % 优化参数目标上限
lb  = [1, 1];   % 优化参数目标下限pop = 8;             % 数量
Max_iteration = 20; % 最大迭代次数   c = Best_pos(1);  
g = Best_pos(2);%% 编码
[t_train,codebook,old_codebook] = code(t_train,codefct);%% 建立模型
model = initlssvm(p_train,t_train,type,c,g,kernel_type,codefct); %SSA%% 训练模型
model = trainlssvm(model);%% 测试模型
t_sim1 = simlssvm(model,p_train);
t_sim2 = simlssvm(model,p_test); T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 性能评价
error1 = sum((T_sim1' == T_train))/M * 100 ;
error2 = sum((T_sim2' == T_test))/N * 100 ;%% 优化曲线
figure
plot(curve, 'linewidth',1.5);
title('-LSSVM')
xlabel('The number of iterations')
ylabel('Fitness')
grid on;
%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '-LSSVM预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501


http://www.ppmy.cn/ops/162903.html

相关文章

矩阵的奇异值(SVD)分解和线性变换

矩阵的奇异值(SVD)分解和线性变换 SVD定义 奇异值分解(Singular Value Decomposition,简称 SVD)是一种重要的线性代数工具,能够将任意矩阵 ( A ∈ R m n \mathbf{A} \in \mathbb{R}^{m \times n} A∈Rmn…

ubuntu中ollama设置记录

自己同一台电脑主机安装3080和3090显卡,测试发现ollama只默认跑在3090上;故查看一下设置,成功也把3080也运行起来了。 原因如下: 开始设置记录: Environment Variables: OLLAMA_DEBUG 作用:显示额外的调试…

【R语言】PCA主成分分析

使用R语言手动实现PCA主成分分析计算&#xff0c;通过计算协方差矩阵计算出数据的主成分得分&#xff0c;根据的分最高的特征进行得分图的绘制 # 读取数据raw_data <- read.csv("R可视化/data.csv", header TRUE, fileEncoding "GBK")new_data <-…

【C】链式二叉树算法题1 -- 单值二叉树

leetcode链接https://leetcode.cn/problems/univalued-binary-tree/description/ 1 题目描述 如果二叉树每个节点都具有相同的值&#xff0c;那么该二叉树就是单值二叉树。只有给定的树是单值二叉树时&#xff0c;才返回 true&#xff1b;否则返回 false。 示例 1&#xff1…

大模型微调入门(Transformers + Pytorch)

目标 输入&#xff1a;你是谁&#xff1f; 输出&#xff1a;我们预训练的名字。 训练 为了性能好下载小参数模型&#xff0c;普通机器都能运行。 下载模型 # 方式1&#xff1a;使用魔搭社区SDK 下载 # down_deepseek.py from modelscope import snapshot_download model_…

Android AsyncLayoutInflater异步加载xml布局文件,Kotlin

Android AsyncLayoutInflater异步加载xml布局文件&#xff0c;Kotlin implementation "androidx.asynclayoutinflater:asynclayoutinflater:1.1.0-alpha01" import android.os.Bundle import android.util.Log import android.view.View import android.view.ViewGro…

【Vue3】浅谈setup语法糖

Vue3 的 setup 语法糖是通过 <script setup> 标签启用的特性&#xff0c;它是对 Composition API 的进一步封装&#xff0c;旨在简化组件的声明式写法&#xff0c;同时保留 Composition API 的逻辑组织能力。以下是其核心概念和原理分析&#xff1a; 一、<script setu…

数据结构:Top-K问题详解

一.Top-K问题 #include<stdio.h> //先自主创建n个数据 void CreateNDate() {// 造数据int n 100000;srand(time(0));//表示随时间初始化随机生成数的种子const char* file "data.txt";///创建一个文件FILE* fin fopen(file, "w");//“只写”写入创…