毕业项目推荐:基于yolov8/yolo11的苹果叶片病害检测识别系统(python+卷积神经网络)

ops/2025/2/27 21:56:56/

文章目录

  • 概要
  • 一、整体资源介绍
    • 技术要点
    • 功能展示:
      • 功能1 支持单张图片识别
      • 功能2 支持遍历文件夹识别
      • 功能3 支持识别视频文件
      • 功能4 支持摄像头识别
      • 功能5 支持结果文件导出(xls格式)
      • 功能6 支持切换检测到的目标查看
  • 二、数据集
  • 三、算法介绍
    • 1. YOLOv8 概述
      • 简介
    • 2. YOLO11 概述
      • YOLOv11:Ultralytics 最新目标检测模型
  • 🌟 四、模型训练步骤
  • 🌟 五、模型评估步骤
  • 🌟 六、训练结果
  • 🌟完整代码

往期经典回顾

项目项目
基于yolov8的车牌检测识别系统基于yolov8/yolov5的钢铁缺陷检测系统
基于yolov8的人脸表情检测识别系统基于深度学习的PCB板缺陷检测系统
基于yolov8/yolov5的茶叶等级检测系统基于yolov8/yolov5的农作物病虫害检测识别系统
基于yolov8/yolov5的交通标志检测识别系统基于yolov8/yolov5的课堂行为检测识别系统
基于yolov8/yolov5的海洋垃圾检测识别系统基于yolov8/yolov5的垃圾检测与分类系统
基于yolov8/yolov5的行人摔倒检测识别系统基于yolov8/yolov5的草莓病害检测识别系统
基于yolov8/yolov5/yolo11的动物检测识别系统

概要

本文将详细介绍如何以官方yolov8yolov11为主干,实现对叶片病害>苹果叶片病害的检测识别,且利用PyQt5设计了两种简约的系统UI界面。在界面中,您可以选择自己的视频文件、图片文件进行检测。此外,您还可以更换自己训练的主干模型,进行自己数据的检测。

引言
苹果作为全球主要经济作物,其叶片病害的早期精准识别是保障果品质量与种植效益的关键。传统检测依赖人工经验,存在效率低、误判率高及难以应对复杂田间环境(如叶片遮挡、病害形态多变)等局限。基于深度学习叶片病害>苹果叶片病害检测系统通过多尺度特征提取与细粒度分类,可高效识别褐斑病、锈病等多类病害,并适配不同生长阶段与光照条件,显著提升检测实时性与准确性。该系统为病害智能预警、精准施药及果园数字化管理提供技术支撑,对减少农药滥用、降低产量损失及推动智慧农业可持续发展具有重要意义。

我们的系统界面不仅外观优美,而且具备出色的检测精度和强大的功能。它支持多目标实时检测,并允许您自由选择感兴趣的检测目标。

yolov8界面如下
在这里插入图片描述

yolo11界面如下 在这里插入图片描述

关键词:叶片病害>苹果叶片病害检测;目标分类;深度学习;特征融合;注意力机制;卷积神经网络

在这里插入图片描述

一、整体资源介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8yolov8 + SE注意力机制yolo11yolo11 + SE注意力机制

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点

技术要点

  • OpenCV:主要用于实现各种图像处理和计算机视觉相关任务。
  • Python:采用这种编程语言,因其简洁易学且拥有大量丰富的资源和库支持。
  • 数据增强技术: 翻转、噪点、色域变换,mosaic等方式,提高模型的鲁棒性。

功能展示:

部分核心功能如下:

  • 功能1: 支持单张图片识别
  • 功能2: 支持遍历文件夹识别
  • 功能3: 支持识别视频文件
  • 功能4: 支持摄像头识别
  • 功能5: 支持结果文件导出(xls格式)
  • 功能6: 支持切换检测到的目标查看

功能1 支持单张图片识别

系统支持用户选择图片文件进行识别。通过点击图片选择按钮,用户可以选择需要检测的图片,并在界面上查看所有识别结果。该功能的界面展示如下图所示:
在这里插入图片描述

在这里插入图片描述

功能2 支持遍历文件夹识别

系统支持选择整个文件夹进行批量识别。用户选择文件夹后,系统会自动遍历其中的所有图片文件,并将识别结果实时更新显示在右下角的表格中。该功能的展示效果如下图所示:
在这里插入图片描述

在这里插入图片描述

功能3 支持识别视频文件

在许多情况下,我们需要识别视频中的目标。因此,系统设计了视频选择功能。用户点击视频按钮即可选择待检测的视频,系统将自动解析视频并逐帧识别多个目标,同时将识别结果记录在右下角的表格中。以下是该功能的展示效果:
在这里插入图片描述

在这里插入图片描述

功能4 支持摄像头识别

在许多场景下,我们需要通过摄像头实时识别目标。为此,系统提供了摄像头选择功能。用户点击摄像头按钮后,系统将自动调用摄像头并进行实时识别,识别结果会即时记录在右下角的表格中。
在这里插入图片描述

在这里插入图片描述

功能5 支持结果文件导出(xls格式)

本系统还添加了对识别结果的导出功能,方便后续查看,目前支持导出xls数据格式,功能展示如下:
在这里插入图片描述

在这里插入图片描述

功能6 支持切换检测到的目标查看

在这里插入图片描述

在这里插入图片描述

二、数据集

提供全面、结构化的数据集,它不仅包含了丰富的类别,而且已经细致地划分为训练集、验证集和测试集,以满足不同阶段的模型训练需求。而且数据集的格式,可直接支持YOLO训练,无需额外的格式转换工作。

11365张数据集,类别如下图文件夹截图。
黑斑病
褐斑病
蛙眼病
灰斑病
健康
白粉病
锈病
黑星病
在这里插入图片描述

部分数据样式如下:

在这里插入图片描述

三、算法介绍

YOLOv8__297">1. YOLOv8 概述

简介

YOLOv8算法的核心特性和改进如下:

  • 全新SOTA模型
    YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X五种尺度的模型,以满足不同场景的需求。
  • Backbone
    骨干网络和Neck部分参考了YOLOv7 ELAN的设计思想。
    YOLOv5的C3结构替换为梯度流更丰富的C2f结构
    针对不同尺度的模型,调整了通道数,使其更适配各种任务需求。
    在这里插入图片描述
    网络结构如下:
    在这里插入图片描述

相比之前版本,YOLOv8对模型结构进行了精心微调,不再是“无脑”地将同一套参数应用于所有模型,从而大幅提升了模型性能。这种优化使得不同尺度的模型在面对多种场景时都能更好地适应。

然而,新引入的C2f模块虽然增强了梯度流,但其内部的Split等操作对特定硬件的部署可能不如之前的版本友好。在某些场景中,C2f模块的这些特性可能会影响模型的部署效率

YOLO11__315">2. YOLO11 概述

YOLOv11Ultralytics__317">YOLOv11:Ultralytics 最新目标检测模型

YOLOv11 是 Ultralytics 公司在 2024 年推出的 YOLO 系列目标检测模型的最新版本。以下是对 YOLOv11 的具体介绍:

主要特点

  1. 增强的特征提取

    • 采用改进的骨干和颈部架构,如在主干网络中引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 允许用户自定义卷积模块的尺寸,提升了灵活性。
    • c2psa 通过整合 psa(位置敏感注意力机制)来增强模型的特征提取效能。
    • 颈部网络采用了 pan 架构,并集成了 c3k2 单元,有助于从多个尺度整合特征,并优化特征传递的效率。
  2. 针对效率和速度优化

    • 精细的架构设计和优化的训练流程,在保持准确性和性能最佳平衡的同时,提供更快的处理速度。
    • 相比 YOLOv10,YOLOv11 的延迟降低了 25%-40%,能够达到每秒处理 60 帧 的速度,是目前最快的目标检测模型之一。
  3. 更少的参数,更高的准确度

    • YOLOv11mCOCO 数据集上实现了比 YOLOv8m 更高的 mAP,参数减少了 22%,提高了计算效率,同时不牺牲准确度。
  4. 跨环境的适应性

    • 可无缝部署在 边缘设备云平台 和配备 NVIDIA GPU 的系统上,确保最大的灵活性。
  5. 支持广泛的任务范围

    • 支持多种计算机视觉任务,包括 目标检测实例分割图像分类姿态估计定向目标检测(OBB)

架构改进

  1. 主干网络

    • 引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 支持用户自定义卷积模块尺寸,增强灵活性。
    • c2psa 整合了 psa(位置敏感注意力机制),提升特征提取效能。
  2. 颈部网络

    • 采用 pan 架构,并集成了 c3k2 单元,帮助从多个尺度整合特征并优化特征传递效率。
  3. 头部网络

    • YOLOv11 的检测头设计与 YOLOv8 大致相似。
    • 在分类(cls)分支中,采用了 深度可分离卷积 来增强性能。

性能优势

  1. 精度提升

    • COCO 数据集上取得了显著的精度提升:
      • YOLOv11x 模型的 mAP 得分高达 54.7%
      • 最小的 YOLOv11n 模型也能达到 39.5%mAP 得分
    • 与前代模型相比,精度有明显进步。
  2. 速度更快

    • 能够满足实时目标检测需求

🌟 四、模型训练步骤

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,根据自己的实际情况修改,想要训练 yolov8s模型 就 修改为 model_yaml = yaml_yolov8s, 训练 添加SE注意力机制的模型就修改为 model_yaml = yaml_yolov8_SE

  3. 修改data_path 数据集路径,我这里默认指定的是traindata.yaml 文件,如果训练我提供的数据,可以不用改

  4. 修改 model.train()中的参数,按照自己的需求和电脑硬件的情况更改

    python"># 文档中对参数有详细的说明
    model.train(data=data_path,             # 数据集imgsz=640,                  # 训练图片大小epochs=200,                 # 训练的轮次batch=2,                    # 训练batchworkers=0,                  # 加载数据线程数device='0',                 # 使用显卡optimizer='SGD',            # 优化器project='runs/train',       # 模型保存路径name=name,                  # 模型保存命名)
    
  5. 修改traindata.yaml文件, 打开 traindata.yaml 文件,如下所示:
    在这里插入图片描述
    在这里,只需修改 path 的值,其他的都不用改动(仔细看上面的黄色字体),我提供的数据集默认都是到 yolo 文件夹,设置到 yolo 这一级即可,修改完后,返回 train.py 中,执行train.py

  6. 打开 train.py ,右键执行。
    在这里插入图片描述

  7. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  8. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 五、模型评估步骤

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path ,根据自己的实际情况修改,具体如何修改,查看上方模型训练中的修改步骤

  4. 修改 model.val()中的参数,按照自己的需求和电脑硬件的情况更改

    python">model.val(data=data_path,           # 数据集路径imgsz=300,                # 图片大小,要和训练时一样batch=4,                  # batchworkers=0,                # 加载数据线程数conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。device='0',               # 使用显卡project='runs/val',       # 保存路径name='exp',               # 保存命名)
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功(下图是示例,具体以自己的实际项目为准。)
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述


🌟 六、训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述

   如果大家对于上面生成的这些内容(confusion_matrix.png、results.png等)不清楚是什么意思,可以在我的知识库里查看这些指标的具体含义,示例截图如下:

在这里插入图片描述

🌟完整代码

   如果您希望获取博文中提到的所有实现相关的完整资源文件(包括测试图片、视频、Python脚本、UI文件、训练数据集、训练代码、界面代码等),这些文件已被全部打包。以下是完整资源包的截图

在这里插入图片描述

您可以通过下方演示视频视频简介部分进行获取:

演示视频:
基于深度学习叶片病害>苹果叶片病害检测识别系统(v8)

基于深度学习叶片病害>苹果叶片病害检测识别系统(v11)


http://www.ppmy.cn/ops/161775.html

相关文章

洛谷 P8705:[蓝桥杯 2020 省 B1] 填空题之“试题 E :矩阵” ← 卡特兰数

【题目来源】 https://www.luogu.com.cn/problem/P8705 【题目描述】 把 1∼2020 放在 21010 的矩阵里。要求同一行中右边的比左边大,同一列中下边的比上边的大。一共有多少种方案? 答案很大,你只需要给出方案数除以 2020 的余数即可。 【答案提交】 …

【Java项目】基于SpringBoot的【旅游管理系统】

【Java项目】基于SpringBoot的【旅游管理系统】 技术简介:采用Java技术、MySQL数据库、Spring框架实现。 系统简介:系统包括管理员、用户二个用户角色,管理员功能可以管理个人中心、用户管理、景区分类管理、景区信息管理、景区商城管理、商品…

P8681 [蓝桥杯 2019 省 AB] 完全二叉树的权值--完全 “二叉树” 不一定是 “满二叉树”

P8681 [蓝桥杯 2019 省 AB] 完全二叉树的权值 题目分析代码 题目 分析 我吧完全二叉树记成满二叉树了^^ 又卡我几分钟 代码 #include <iostream> #include <vector> #include <string> #include <algorithm> #include <math.h> #include <qu…

算法仿真平台搭建1-FFMPEG+RtspSever快速搭建一个RTSP服务器

一、前言 本文相关的全部源码和RtspSever库&#xff0c;我已打包上传&#xff0c;欢迎大家免费下载&#xff0c;testRTSPSever。 每一个嵌入式视觉算法工程师&#xff0c;都应该有一套属于自己的算法仿真和测试环境。可以方便地进行视频、图像等素材进行在线导入&#xff0c;可…

是德科技keysight N5173B信号发生器,是一款经济高效的仪器

是德科技keysight N5173B信号发生器安捷伦N5173B信号源 是德N5173B微波模拟信号发生器&#xff0c;拥有 9 kHz 至 40 GHz 的频率覆盖范围&#xff0c;N5173B为宽带滤波器、放大器、接收机等器件的参数测试提供了必要的信号&#xff0c;是一款经济高效的仪器。 N5173B特点&…

C# Unity 唐老狮 No.2 模拟面试题

本文章不作任何商业用途 仅作学习与交流 安利唐老狮与其他老师合作的网站,内有大量免费资源和优质付费资源,我入门就是看唐老师的课程 打好坚实的基础非常非常重要: Unity课程 - 游习堂 - 唐老狮创立的游戏开发在线学习平台 - Powered By EduSoho 如果你发现了文章内特殊的字体…

springboot集成deepseek4j

1、文档地址 快速开始 - 零基础入门Java AI 免费的模型 Models 2、pom文件依赖 parent依赖 <dependency><groupId>com.squareup.okhttp3</groupId><artifactId>okhttp</artifactId><version>4.12.0</version></dependency>&…

动态数据表格:基于 PrimeFaces 的运行时列选择实现

在现代的 Web 应用开发中&#xff0c;动态数据表格是一个非常实用的功能&#xff0c;它允许用户根据自己的需求选择显示哪些列。这种灵活性不仅提升了用户体验&#xff0c;还能适应不同的数据展示需求。今天&#xff0c;我们将通过一个具体的实现案例&#xff0c;展示如何使用 …