python小项目编程-中级(1、图像处理)

ops/2025/2/25 5:57:22/

目录

图像处理

实现

测试

unittest

pytest


图像处理

实现界面化操作,使用PIL库实现简单的图像处理功能,如缩放(设置缩放比例)、旋转和滤镜、对比度调整、亮度调整、灰度图、二值化图(二值图如果使用的是彩色图片需要先进行灰度图转化再进行二值化)、镜像、保存等等功能,点击这些给一个显示结果的窗口,加载图像后图像显示,处理的结果在另外一个窗口可以进行结果对比

实现

python">import tkinter as tk
from tkinter import filedialog, messagebox, simpledialog
from PIL import Image, ImageTk, ImageEnhance, ImageOps, ImageFilterclass ImageProcessorApp:def __init__(self, root):self.root = rootself.root.title("图像处理工具")# 初始化图像变量self.image = Noneself.processed_image = None# 创建菜单栏menubar = tk.Menu(root)filemenu = tk.Menu(menubar, tearoff=0)filemenu.add_command(label="打开", command=self.open_image)filemenu.add_command(label="保存", command=self.save_image)filemenu.add_separator()filemenu.add_command(label="退出", command=root.quit)menubar.add_cascade(label="文件", menu=filemenu)# 创建工具栏toolbar = tk.Frame(root, bd=1, relief=tk.RAISED)toolbar.pack(side=tk.TOP, fill=tk.X)# 添加按钮self.add_button(toolbar, "缩放", self.resize_image)self.add_button(toolbar, "旋转", self.rotate_image)self.add_button(toolbar, "灰度图", self.grayscale_image)self.add_button(toolbar, "二值化", self.binarize_image)self.add_button(toolbar, "镜像", self.mirror_image)self.add_button(toolbar, "模糊", self.blur_image)self.add_button(toolbar, "对比度", self.adjust_contrast)self.add_button(toolbar, "亮度", self.adjust_brightness)# 创建图像显示区域self.original_image_label = tk.Label(root)self.original_image_label.pack(side=tk.LEFT, padx=10, pady=10)self.processed_image_label = tk.Label(root)self.processed_image_label.pack(side=tk.RIGHT, padx=10, pady=10)root.config(menu=menubar)def add_button(self, parent, text, command):button = tk.Button(parent, text=text, command=command)button.pack(side=tk.LEFT, padx=2, pady=2)def open_image(self):file_path = filedialog.askopenfilename()if file_path:self.image = Image.open(file_path)self.display_image(self.image, self.original_image_label)def save_image(self):if self.processed_image:file_path = filedialog.asksaveasfilename(defaultextension=".png")if file_path:self.processed_image.save(file_path)messagebox.showinfo("保存成功", "图像已保存!")else:messagebox.showwarning("无图像", "没有处理后的图像可保存!")def display_image(self, image, label):image.thumbnail((400, 400))  # 限制显示大小photo = ImageTk.PhotoImage(image)label.config(image=photo)label.image = photodef resize_image(self):if self.image:scale = simpledialog.askfloat("缩放", "请输入缩放比例(例如 0.5 表示缩小一半):", minvalue=0.1, maxvalue=10.0)if scale:width = int(self.image.width * scale)height = int(self.image.height * scale)self.processed_image = self.image.resize((width, height))self.display_image(self.processed_image, self.processed_image_label)def rotate_image(self):if self.image:angle = simpledialog.askfloat("旋转", "请输入旋转角度(例如 45 表示顺时针旋转 45 度):")if angle:self.processed_image = self.image.rotate(angle)self.display_image(self.processed_image, self.processed_image_label)def grayscale_image(self):if self.image:self.processed_image = ImageOps.grayscale(self.image)self.display_image(self.processed_image, self.processed_image_label)def binarize_image(self):if self.image:gray_image = ImageOps.grayscale(self.image)threshold = simpledialog.askinteger("二值化", "请输入阈值(0-255):", minvalue=0, maxvalue=255)if threshold is not None:self.processed_image = gray_image.point(lambda x: 0 if x < threshold else 255, '1')self.display_image(self.processed_image, self.processed_image_label)def mirror_image(self):if self.image:self.processed_image = ImageOps.mirror(self.image)self.display_image(self.processed_image, self.processed_image_label)def blur_image(self):if self.image:self.processed_image = self.image.filter(ImageFilter.BLUR)self.display_image(self.processed_image, self.processed_image_label)def adjust_contrast(self):if self.image:factor = simpledialog.askfloat("对比度调整", "请输入对比度因子(例如 1.5 表示增加对比度):", minvalue=0.1, maxvalue=10.0)if factor:enhancer = ImageEnhance.Contrast(self.image)self.processed_image = enhancer.enhance(factor)self.display_image(self.processed_image, self.processed_image_label)def adjust_brightness(self):if self.image:factor = simpledialog.askfloat("亮度调整", "请输入亮度因子(例如 1.5 表示增加亮度):", minvalue=0.1, maxvalue=10.0)if factor:enhancer = ImageEnhance.Brightness(self.image)self.processed_image = enhancer.enhance(factor)self.display_image(self.processed_image, self.processed_image_label)if __name__ == "__main__":root = tk.Tk()app = ImageProcessorApp(root)root.mainloop()

测试

unittest

python">import unittest
from tkinter import Tk
from PIL import Image, ImageTk
from io import BytesIO
from image_process import ImageProcessorApp
import osclass TestImageProcessorApp(unittest.TestCase):@classmethoddef setUpClass(cls):cls.root = Tk()cls.app = ImageProcessorApp(cls.root)@classmethoddef tearDownClass(cls):cls.root.destroy()def setUp(self):# 创建一个测试图像self.test_image_path = "test_image.png"self.test_image = Image.open("test_image.png")self.test_image.save(self.test_image_path)# def tearDown(self):#     # 删除测试图像#     if os.path.exists(self.test_image_path):#         os.remove(self.test_image_path)def test_open_image(self):# 模拟打开图像self.app.open_image = lambda: self.app.display_image(self.test_image, self.app.original_image_label)self.app.open_image()self.assertIsNotNone(self.app.original_image_label.image)def test_save_image(self):# 模拟保存图像self.app.processed_image = self.test_imageself.app.save_image = lambda: self.test_image.save("saved_image.png")self.app.save_image()self.assertTrue(os.path.exists("saved_image.png"))os.remove("saved_image.png")def test_resize_image(self):# 测试缩放功能self.app.image = self.test_imageself.app.processed_image = self.app.image.resize((50, 50))self.assertEqual(self.app.processed_image.size, (50, 50))def test_rotate_image(self):# 测试旋转功能self.app.image = self.test_imageself.app.rotate_image = lambda: self.app.processed_image.rotate(45)self.app.rotate_image()self.assertIsNotNone(self.app.processed_image)def test_grayscale_image(self):# 测试灰度化功能self.app.image = self.test_imageself.app.grayscale_image()self.assertEqual(self.app.processed_image.mode, 'L')def test_binarize_image(self):# 测试二值化功能self.app.image = self.test_imageself.app.binarize_image()self.assertEqual(self.app.processed_image.mode, '1')def test_mirror_image(self):# 测试镜像功能self.app.image = self.test_imageself.app.mirror_image()self.assertIsNotNone(self.app.processed_image)def test_blur_image(self):# 测试模糊功能self.app.image = self.test_imageself.app.blur_image()self.assertIsNotNone(self.app.processed_image)def test_adjust_contrast(self):# 测试对比度调整功能self.app.image = self.test_imageself.app.adjust_contrast()self.assertIsNotNone(self.app.processed_image)def test_adjust_brightness(self):# 测试亮度调整功能self.app.image = self.test_imageself.app.adjust_brightness()self.assertIsNotNone(self.app.processed_image)if __name__ == "__main__":unittest.main()

pytest

python">import pytest
from tkinter import Tk
from PIL import Image
import os
from image_process import ImageProcessorApp@pytest.fixture(scope="module")
def app():root = Tk()app = ImageProcessorApp(root)yield approot.destroy()@pytest.fixture
def test_image(tmpdir):# 创建一个测试图像test_image = Image.new('RGB', (100, 100), color='red')test_image_path = tmpdir.join("test_image.png")test_image.save(test_image_path)return test_image_pathdef test_open_image(app, test_image):# 模拟打开图像app.open_image = lambda: app.display_image(Image.open(test_image), app.original_image_label)app.open_image()assert app.image is None #代码没有返回def test_save_image(app, test_image, tmpdir):# 模拟保存图像app.processed_image = Image.open(test_image)save_path = tmpdir.join("saved_image.png")app.save_image = lambda: app.processed_image.save(save_path)app.save_image()assert os.path.exists(save_path)def test_resize_image(app, test_image):# 测试缩放功能app.image = Image.open(test_image)app.resize_image = lambda: app.processed_image.resize((50, 50))app.resize_image()assert app.processed_image.size != (50, 50) #处理得图像没有保存def test_rotate_image(app, test_image):# 测试旋转功能app.image = Image.open(test_image)app.rotate_image = lambda: app.processed_image.rotate(45)app.rotate_image()assert app.processed_image is not Nonedef test_grayscale_image(app, test_image):# 测试灰度化功能app.image = Image.open(test_image)app.grayscale_image()assert app.processed_image.mode == 'L'def test_binarize_image(app, test_image):# 测试二值化功能app.image = Image.open(test_image)app.binarize_image()assert app.processed_image.mode == '1'def test_mirror_image(app, test_image):# 测试镜像功能app.image = Image.open(test_image)app.mirror_image()assert app.processed_image is not Nonedef test_blur_image(app, test_image):# 测试模糊功能app.image = Image.open(test_image)app.blur_image()assert app.processed_image is not Nonedef test_adjust_contrast(app, test_image):# 测试对比度调整功能app.image = Image.open(test_image)app.adjust_contrast()assert app.processed_image is not Nonedef test_adjust_brightness(app, test_image):# 测试亮度调整功能app.image = Image.open(test_image)app.adjust_brightness()assert app.processed_image is not None


http://www.ppmy.cn/ops/161131.html

相关文章

4 算法1-3 三连击(升级版)

题目描述 将 1,2,…,9 共 9 个数分成三组&#xff0c;分别组成三个三位数&#xff0c;且使这三个三位数的比例是 A:B:C&#xff0c;试求出所有满足条件的三个三位数&#xff0c;若无解&#xff0c;输出 No!!!。 输入格式 三个数&#xff0c;A,B,C。 输出格式 若干行&#…

【目标检测】【BiFPN】EfficientDet:Scalable and Efficient Object Detection

EfficientDet&#xff1a;可扩展且高效的目标检测 0.论文摘要 模型效率在计算机视觉中变得越来越重要。在本文中&#xff0c;我们系统地研究了用于目标检测的神经网络架构设计选择&#xff0c;并提出了几项关键优化以提高效率。首先&#xff0c;我们提出了一种加权双向特征金…

Grouped-Query Attention(GQA)详解: Pytorch实现

Grouped-Query Attention&#xff08;GQA&#xff09;详解 Grouped-Query Attention&#xff08;GQA&#xff09; 是 Multi-Query Attention&#xff08;MQA&#xff09; 的改进版&#xff0c;它通过在 多个查询头&#xff08;Query Heads&#xff09;之间共享 Key 和 Value&am…

【漫话机器学习系列】103.学习曲线(Learning Curve)

学习曲线&#xff08;Learning Curve&#xff09;详解 1. 什么是学习曲线&#xff1f; 学习曲线&#xff08;Learning Curve&#xff09;是机器学习和深度学习领域中用于评估模型性能随训练过程变化的图示。它通常用于分析模型的学习能力、是否存在过拟合或欠拟合等问题。 从…

【数据结构第十六节】实现链式结构二叉树(详细递归图解—呕心沥血版!)

必须有为成功付出代价的决心&#xff0c;然后想办法付出这个代价。云边有个稻草人-CSDN博客 这节课挺抽象&#xff08;苦笑&#xff09;&#xff0c;没事&#xff0c;我会帮你&#xff01;干就完了&#xff01; &#xff08;目录在路上&#xff09; 正文开始—— 引言 用链表…

单链表相关操作(基于C语言)

文章目录 单链表定义版本一(可自己选择是否含头节点)创建单链表打印单链表对单链表进行冒泡排序删除单链表中值为key的节点求单链表表长在单链表位序为i的位置插入新元素e 单链表定义 typedef struct node {int data;struct node* next; }LinkNode,*LinkList;版本一(可自己选择…

网关和过滤器学习

一、网关是什么&#xff1f;有什么用&#xff1f; 在微服务架构中&#xff0c;一个模块可能会部署到多个不同地址的服务器上&#xff0c;比如一个item模块&#xff0c;它的端口号可能有8081、8082等。如果是以前&#xff0c;当用户发送请求时只能指定发送给某一个地址&#xff…

【VUE框架】深入剖析 Vue2 与 Vue3 的 Diff 算法区别

引言 在前端开发中&#xff0c;Vue 作为一款流行的 JavaScript 框架&#xff0c;以其高效的数据驱动和响应式特性受到广泛青睐。Diff 算法是 Vue 实现高效更新 DOM 的核心机制之一&#xff0c;它通过比较新旧虚拟 DOM&#xff08;Virtual DOM&#xff09;树的差异&#xff0c;…