本地部署MindSearch(开源 AI 搜索引擎框架),然后上传到 hugging face的Spaces——L2G6

ops/2025/2/21 7:52:38/

部署MindSearch到 hugging face Spaces上——L2G6

任务1

在 官方的MindSearch页面 复制Spaces应用到自己的Spaces下,Space 名称中需要包含 MindSearch 关键词,请在必要的步骤以及成功的对话测试结果当中

实现过程如下:

2.1 MindSearch 简介

MindSearch 是一个开源的 AI 搜索引擎框架,具有与 Perplexity.ai Pro 相同的性能。我们可以轻松部署它来构建自己的专属搜索引擎,可以基于闭源的LLM(如GPT、Claude系列),也可以使用开源的LLM(如经过专门优化的InternLM2.5 系列模型,能够在MindSearch框架中提供卓越的性能) 最新版的MindSearch拥有以下特性:

  • 🤔 任何你想知道的问题:MindSearch 通过搜索解决你在生活中遇到的各种问题
  • 📚 深度知识探索:MindSearch 通过数百个网页的浏览,提供更广泛、深层次的答案
  • 🔍 透明的解决方案路径:MindSearch 提供了思考路径、搜索关键词等完整的内容,提高回复的可信度和可用性。
  • 💻 多种用户界面:为用户提供各种接口,包括 React、Gradio、Streamlit 和本地调试。根据需要选择任意类型。
  • 🧠 动态图构建过程:MindSearch 将用户查询分解为图中的子问题节点,并根据 WebSearcher 的搜索结果逐步扩展图。

在这里插入图片描述

2.2 开发环境配置

在入门岛我们已经提到过,想要简单部署到hugging face上,我们需要将开发机平台从InternStudio 替换成 GitHub CodeSpace。且随着硅基流动提供了免费的InternLM2.5-7B-Chat的API服务,大大降低了部署门槛,我们无需GPU资源也可以部署和使用MindSearch,这也是可以利用CodeSpace完成本次实验的原因。 那就让我们一起来看看如何使用硅基流动的API来部署MindSearch吧~

2.2.1. 打开codespace主页,选择Blank模板进行创建

在这里插入图片描述

2.2.2. 创建conda环境隔离并安装依赖

如果只针对于这个实验的话,其实在codespace里面不用单独创建conda环境。但是隔离是一个好习惯,因此我们还是创建一个相应的虚拟环境来隔离

conda create -n mindsearch python=3.10 -y
conda init

如果是新建的codespace,在第一次创建conda环境时,需要conda init,再另启一个终端并activate

conda activate mindsearchcd /workspaces/codespaces-blank
git clone https://github.com/InternLM/MindSearch.git && cd MindSearch && git checkout ae5b0c5pip install -r requirements.txt

2.3. 获取硅基流动API KEY

因为要使用硅基流动的 API Key,所以接下来便是注册并获取 API Key 了。 首先,我们打开它的登录界面来注册硅基流动的账号(如果注册过,则直接登录即可)。 在完成注册后,打开api key页面来准备 API Key。首先创建新 API 密钥,然后点击密钥进行复制,以备后续使用。

2.4. 启动MindSearch

2.4.1. 启动后端

由于硅基流动 API 的相关配置已经集成在了 MindSearch 中,所以我们在一个终端A中可以直接执行下面的代码来启动 MindSearch 的后端。

export SILICON_API_KEY=<上面复制的API KEY>
conda activate mindsearch# 进入你clone的项目目录
cd /workspaces/codespaces-blank/MindSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine DuckDuckGoSearch --asy
  • –lang: 模型的语言,en 为英语,cn 为中文。
  • –model_format: 模型的格式。
    • internlm_silicon 为 InternLM2.5-7b-chat 在硅基流动上的API模型
  • –search_engine: 搜索引擎。
    • DuckDuckGoSearch 为 DuckDuckGo 搜索引擎。
    • BingSearch 为 Bing 搜索引擎。
    • BraveSearch 为 Brave 搜索引擎。
    • GoogleSearch 为 Google Serper 搜索引擎。
    • TencentSearch 为 Tencent 搜索引擎。

在这里插入图片描述

2.4.2. 启动前端

在后端启动完成后,我们打开新终端B运行如下命令来启动 MindSearch 的前端:

conda activate mindsearch
# 进入你clone的项目目录
cd /workspaces/codespaces-blank/MindSearch
python frontend/mindsearch_gradio.py

在这里插入图片描述

前后端都启动后,我们应该可以看到github自动为这两个进程做端口转发:

在这里插入图片描述

如果启动前端后没有自动打开前端页面的话,我们可以手动用7882的端口转发地址打开gradio的前端页面~ 然后就可以体验MindSearch gradio版本啦~ 比如向其询问:“Find legal precedents in contract law.” 等待一段时间后,会在页面上输出它的结果。

在这里插入图片描述

可能遇到的问题

在这一步中,可能终端会打印报错信息,但是只要前端页面上没有出现报错就行。如果前端页面上出现错误并终止,那么可能是MindSearch 中 searcher 模块的问题。在上面的例子中我们使用的是DuckDuckGoSearch,因此你也可以尝试其他的搜索引擎API。如我们可以替换为BingSearch 或者 TencentSearch 进行尝试。

# BingSearch
python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine BingSearch --asy
# TencentSearch
# python -m mindsearch.app --lang cn --model_format internlm_silicon --search_engine TencentSearch --asy

2.5. 部署到自己的 HuggingFace Spaces上

这里我们介绍一种更简单的方法,它就像克隆一样,无需编写代码即可部署自己的Spaces应用~

首先我们找到InternLM官方部署的MindSearch Spaces应用

2.5.1 选择配置

在该页面的右上角,选择Duplicate this Space

在这里插入图片描述

选择如下配置后,即可Duplicate Space

  • Space Hardware选择第一条,即Free的2vCPU即可
  • 填写好SILICON_API_KEY,即上面提到的硅基流动的API KEY

然后就开始部署啦
在这里插入图片描述

2.5.2 测试结果

回到自己头像的space中,会发现,已经有running在运行啦,这样就完成啦快速部署自己的Huggingface的模型啦!

点击就可以测试啦,

在这里插入图片描述

等待Spaces应用启动,当启动好后上方会显示绿色的running标志,这时我们可以输入input进行测试了,我们可以在Sapces应用页面的输入框中输入以下内容:

# input
What are the top 10 e-commerce websites?

测试时可能会发现页面卡住了很久(两三分钟),我们可以查看日志,最后两行可能报如下错误:

graph.add_edge(start_node="root", end_node("contract_enforcement"))SyntaxError: positional argument follows keyword argument

此时需要在页面右上角选择Restart Space,待到重启完成后(显示绿色running标志后)再刷新一下网页页面,再次测试结果如下~

在这里插入图片描述

至此,我们就完成了MindSearch在Hugging Face上面的部署。


http://www.ppmy.cn/ops/160187.html

相关文章

qt:常见标签操作,倒计时功能,进度条与日历

1.标签常见函数 函数功能void setext(const QString &text)设置文本QString text()const获取文本void setPixmap(const QPixmap)与Pixmap()const设置和获取图像void setAlignment(Qt::Alignment alignment)设置对齐&#xff08;获取和上面一样&#xff09;void setWordWr…

DeepSeek+kimi自动生成ppt

AI自动生成ppt 描述需求&#xff0c;生成大纲 在deepseek里输入需求&#xff0c;https://chat.deepseek.com/&#xff0c; 或者在其它AI搜索里&#xff0c;如kimi中Kimi.ai - 会推理解析&#xff0c;能深度思考的AI助手 搜索后会得到大纲&#xff0c;复制出来。 打开KIMI …

【HarmonyOS Next】鸿蒙监听手机按键

【HarmonyOS Next】鸿蒙监听手机按键 一、前言 应用开发中我们会遇到监听用户实体按键&#xff0c;或者扩展按键的需求。亦或者是在某些场景下&#xff0c;禁止用户按下某些按键的业务需求。 这两种需求&#xff0c;鸿蒙都提供了对应的监听事件进行处理。 onKeyEvent 默认的…

当滑动组件连续触发回调函数的三种解决办法

1. 节流&#xff08;Throttle&#xff09; 节流是一种限制函数调用频率的技术&#xff0c;它会在一定时间内只允许函数执行一次。在滑动组件中使用节流可以避免短时间内的连续触发。 Entry Component struct ThrottleSlideExample {// 节流时间间隔&#xff0c;单位为毫秒pri…

Git安装

一、下载安装包 连接 二、详细安装 三、环境配置 1. 设置 Git 全局用户名和邮箱 git config --global user.name "gitxiewei" git config --global user.email "returnxw163.com" 2. 验证配置 git config --global --list 3. 设置别名 在4在文件夹中找…

推荐一个github star45k+进阶的java项目及知识的网站

mall是github上star 45k的一个java项目 mall项目是一套电商系统&#xff0c;包括前台商城系统及后台管理系统&#xff0c;基于SpringBootMyBatis实现&#xff0c;采用Docker容器化部署。 前台商城系统包含首页门户、商品推荐、商品搜索、商品展示、购物车、订单流程、会员中心…

C/C++面试知识点总结

目录 1. 指针1.1 智能指针1.2 指针和引用的区别1.3 数组和指针的区别1.4 数组指针和指针数组的区别1.5 迭代器和指针的区别1.6 strcpy 和 memcpy 的区别 2. 内存管理与分配2.1 内存分配与存储区2.2 malloc / free2.3 volatile和extern的区别2.4 拷贝构造函数2.5 预处理、编译、…

接口测试-API测试中常用的协议(中)

一、SOAP SOAP&#xff08;Simple Object Access Protocol&#xff09;即简单对象访问协议&#xff0c;是一种基于 XML 的用于在网络中交换结构化信息的协议&#xff0c;常用于 Web 服务之间的通信。以下为你详细介绍&#xff1a; 产生背景 在互联网发展过程中&#xff0c;需…